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Abstract. We consider the Algorithmic Differentiation (also know as Automatic
Differentiation; AD) of numerical simulation programs that contain calls to direct
solvers for systems of n linear equations. AD of the linear solvers yields a local
overhead of O(n3) for the computation of directional derivatives or adjoints of the
solution vector with respect to the system matrix and right-hand side. The local
memory requirement is of the same order in adjoint mode AD. Mathematical
insight yields a reduction of the local computational complexity to O(n2). The
memory overhead can be reduced to at least O(n2) in adjoint mode. We derive
efficient tangent-linear and adjoint direct linear solvers and illustrate their use
within tangent-linear and adjoint versions of the enclosing numerical simulation.

1 Motivation

Algorithmic Differentiation (AD) [GW08,Nau12a] is a semantic program trans-
formation technique that yields robust and efficient derivative code. Its reverse or
adjoint mode is of particular interest in large-scale nonlinear optimization due to
the independence of its computational cost on the number of free parameters. AD
tools for compile- (source code transformation) and run-time (operator and func-
tion overloading) solutions have been developed many of which are listed on the
AD community’s web portal www.autodiff.org. Traditionally, AD tools trans-
form the source code at the level of arithmetic operators and built-in functions.
Potentially complex numerical kernels, for example, matrix products [Gil08] or
the solvers for systems of linear equations to be discussed in this paper, are
typically not considered as intrinsic functions often resulting in suboptimal com-
putational performance. Ideally, one would like to re-use intermediate results of
the evaluation of the original kernel for the evaluation of directional derivatives
and/or adjoints, thus, potentially reducing the computational overhead induced
by the differentiation. For direct linear solvers mathematical insight yields a re-
duction of the overhead from O(n3) to O(n2). Applicability of this theoretical
result is facilitated by the integration of direct linear solvers as intrinsic functions
into AD software tools. For a given programming language a generally applica-
ble solution would require built-in numerical kernels. However, currently these
kernels are provided through various run time support libraries. A practical im-
plementation needs to focus on a given library. A large number of technical issues
need to be addressed that do not add to the conceptual understanding of the
subject. For this reason we chose to present a reference implementation based on



a simple custom Gauss solver in the appendix while focusing on the mathemati-
cal/algorithmic details in the main paper. Readers are welcome to download the
sources of all implementations that are referenced in the following from

www.stce.rwth-aachen.de/publications/Naumann2012DLS.

2 Foundations

We consider the computation of directional derivatives (tangents)

IRn ∋ x(1) =<
∂x

∂A
,A(1) > + <

∂x

∂b
,b(1) > (1)

and of adjoints

IRn×n ∋ A(1) =< x(1),
∂x

∂A
> (2)

and

IRn ∋ b(1) =< x(1),
∂x

∂b
> (3)

for direct solvers of systems of linear equations

A · x = b, (4)

where A = A(z) ∈ IRn×n, b = b(z) ∈ IRn, x ∈ IRn, and z ∈ IRm. The continuous
approach to the computation of derivatives of the solution x with respect to
the right-hand side b (see Sections 3.2 and 4.2) has been proposed previously
(see, for example, [TFK06]). We are not aware of a corresponding description of
differentiation with respect to the system matrix A. Moreover, to the best of our
knowledge, there does not exist a formal description of the special treatment of
(direct) linear solvers in the context of AD tool development.

For the purpose of illustration, the linear solvers are assumed to be embedded
into the convex nonlinear programming (NLP) problem

min
z∈IRm

f(z)

for a given objective function f : IRm → IR. If first-order gradient-based methods
shall be used for its solution, then the gradient of y = f(z) ∈ IR with respect to
z ∈ IRm needs to be computed.

We adopt the notation from [Nau12a]. Individual entries of a projection IRn ∋

x
(1)
A ≡< ∂x

∂A , A
(1) > of the three-tensor ∂x

∂A ∈ IRn×(n×n) in direction A(1) ∈ IRn×n

are defined as inner products

[

x
(1)
A

]

i
=

n−1
∑

j=0

n−1
∑

k=0

[

∂x

∂A

]

i,j,k

·
[

A(1)
]

j,k
(5)

for i = 0, . . . , n − 1 and given serializations (referred to as vectorizations in
[MN02]) of A and A(1) ∈ IRn×n. We denote the element with indexes i0, . . . , ik−1

within a k-tensor T by [T ]i0,...,ik−1
. Tensors up to fourth order need to be con-

sidered in the following. The matrix-vector product IRn ∋ x
(1)
b ≡< ∂x

∂b ,b
(1) > (a

projection of the two-tensor ∂x
∂b ∈ IRn×n in direction b(1) ∈ IRn) becomes

[

x
(1)
b

]

i
=

n−1
∑

j=0

[

∂x

∂b

]

i,j

·
[

b(1)
]

j
(6)

4



for i = 0, . . . , n − 1 and given b(1) ∈ IRn. Adjoints are defined as projections of
∂x
∂A in direction x(1), that is,

[

A(1)

]

i,j
=

n−1
∑

k=0

[

x(1)

]

k
·

[

∂x

∂A

]

k,i,j

(7)

for i, j = 0, . . . , n − 1 and, similarly, as projections of ∂x
∂b in the same direction,

that is,

[

b(1)

]

i
=

n−1
∑

j=0

[

x(1)

]

j
·

[

∂x

∂b

]

j,i

(8)

for i = 0, . . . , n− 1 and given x(1) ∈ IRn. The above projections of the derivative

tensors ∂x
∂A and ∂x

∂b shall be evaluated in tensor-free fashion, that is, without
accumulation of the tensors themselves.

For further illustration, f is decomposed into a sequence of three successive
function evaluations

y = f(z) = p(S(P (z))), (9)

where P : IRm → IRn×n× IRn denotes the part of the computation that precedes
the direct linear solver S : IRn×n × IRn → IRn and where p : IRn → IR maps
the result x onto the scalar objective y. The direct linear solver x = S(A,b)
solves the system of linear equations for A = A(z) and b = b(z), for example,
by LU, QR, or LLT factorization of A as described in any standard textbook on
numerical linear algebra; see, for example, [TB97].

While we use unconstrained NLP as the motivating context, the results in
this paper are applicable to arbitrary problems that involve the solution of linear
systems including the solution of systems of nonlinear equations and general NLP
problems, for example, with constraints given as (partial) differential equations
[HPUU09]. Our arguments will be based on the following algorithmic description
of Equation (9):

(

A
b

)

:= P (z) (10)

x := S(A,b) (11)

y := p(x). (12)

This structure occurs, for example, in the context of parameter calibration prob-
lems for (partial) differential equations the solution of which is to be fitted to
given observations. See Section 5 for a case study.

AD yields semantic transformations of implementations of, in general, multi-
variate vector functions F : IRn → IRm as computer programs. In the following
we use the notation from [Nau12a] that is partially inspired by the notation
used in [GW08]. For AD to become applicable, the given implementation of F is
assumed to decompose into a single assignment code (SAC) as follows:

for j = n, . . . , n+ p+m− 1

vj = ϕj(vi)i≺j ,
(13)
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where i ≺ j denotes a direct dependence of vj on vi. The result of each intrinsic

function1 ϕj is assigned to a unique auxiliary variable vj . The n independent

inputs xi = vi, for i = 0, . . . , n − 1, are mapped onto m dependent outputs

yj = vn+p+j , for j = 0, . . . ,m− 1. The values of p intermediate variables vk are
computed for k = n, . . . , n+ p− 1.

The SAC induces a directed acyclic graph (DAG) G = (V,E) with integer
vertices V = {0, . . . , n + p +m − 1} and edges E = {(i, j)|i ≺ j}. The vertices
are sorted topologically with respect to variable dependence, that is, ∀i, j ∈
V : (i, j) ∈ E ⇒ i < j. Intrinsic functions ϕj are assumed to posses jointly
continuous partial derivatives with respect to their arguments. Association of
the local partial derivatives with their corresponding edges in the DAG yields
the linearized DAG. The linearized DAG of our reference problem is shown in
Fig. 1 (a) with (high-level) intrinsic functions P, S, and p.

z

A b

x

y

[ ∂A
∂z

] [ ∂b
∂z

]

[ ∂x
∂A

] [ ∂x
∂b

]

[ ∂y
∂x

]

s

z

A b

x

y

[z(1)]

[ ∂A
∂z

] [ ∂b
∂z

]

[ ∂x
∂A

] [ ∂x
∂b

]

[ ∂y
∂x

]

z

A b

x

y

t

[ ∂A
∂z

] [ ∂b
∂z

]

[ ∂x
∂A

] [ ∂x
∂b

]

[ ∂y
∂x

]

[y(1)]

(a) (b) (c)

Fig. 1. Reference Problem: (a) Linearized DAG; (b) Tangent-Linear Extension; (c) Adjoint
Extension

By the chain rule of differential calculus, the entries of the Jacobian A =
(ai,j) ≡ ∇F (x) of F can be computed as

ai,j =
∑

π∈[i→n+p+j]

∏

(k,l)∈π

cl,k (14)

1 Intrinsic functions can range from fundamental arithmetic operations (+, ∗, . . .) and built-in
(into the used programming language) functions (sin, exp, . . .) to potentially highly complex
numerical algorithms such as routines for interpolation, numerical integration, or the solution
of systems of linear or nonlinear equations. In its basic form, AD is defined for the arithmetic
operators and built-in functions. A formal extension of this concept to higher-level intrinsics
turns out to be straight forward. For a complex algorithm to become an intrinsic function
we require existence and availability of the partial derivatives of its results with respect to
its arguments.
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with local partial derivatives

cl,k ≡
∂ϕl

∂vk
(vq)q≺l

and where [i → n+p+j] denotes the set of all paths that connect the independent
vertex i with the dependent vertex n+ p+ j [Bau74]. For example, according to
Fig. 1

∂f

∂z
≡

∂y

∂z
=

∂y

∂x
·
∂x

∂A
·
∂A

∂z
+

∂y

∂x
·
∂x

∂b
·
∂b

∂z
=

∂y

∂x
·

(

∂x

∂A
·
∂A

∂z
+

∂x

∂b
·
∂b

∂z

)

.

The minimization of the computational cost of Jacobian accumulation is known
to be NP-hard [Nau08]. Elimination techniques on linearized DAGs that facilitate
approximate solutions of the combinatorialOptimal Jacobian Accumulation prob-
lem have been developed for several years; see, for example, [GR91,GV03,Nau04].

The Jacobian ∇F = ∇F (x) induces a linear mapping ∇F : IRn → IRm

defined by

x(1) 7→< ∇F,x(1) > .

The function F (1) : IR2·n → IRm, defined as

y(1) = F (1)(x,x(1)) ≡< ∇F,x(1) >= ∇F (x) · x(1), (15)

is referred to as the tangent-linear model of F. The directional derivative y(1)

can be regarded as the partial derivative of y with respect to an auxiliary scalar
variable s, where

x(1) =
∂x

∂s
.

Interpretation of the chain rule on the corresponding linearized DAG (the tangent-
linear extension of the original linearized DAG) yields

y(1) ≡
∂y

∂s
=

∂y

∂x
·
∂x

∂s
=< ∇F (x),x(1) > .

The tangent-linear extension of the linearized DAG of our reference problem is
shown in Fig. 1 (b). Equation (14) yields y(1) = ∂y

∂z · z(1) =< ∂y
∂z , z

(1) > . Note

that ∂y
∂z ∈ IR1×m.

The adjoint of a linear operator is its transpose [DS88]. Consequently, the
transposed Jacobian ∇F T = ∇F (x)T induces a linear mapping IRm → IRn

defined by

y(1) 7→ ∇F T · y(1).

The function F(1) : IR
n+m → IRn defined as

x(1) = F(1)(x,y(1)) ≡< y(1),∇F (x) >= ∇F (x)T · y(1) (16)

is referred to as the adjoint model of F. Adjoints can be defined as partial deriva-
tives of an auxiliary scalar variable t with respect to y and x, where

y(1) ≡
∂t

∂y
and x(1) ≡

∂t

∂x
.
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By the chain rule, we get

x(1) ≡

(

∂t

∂x

)T

=

(

∂y

∂x

)T

·

(

∂t

∂y

)T

= ∇F (x)T · y(1).

The corresponding adjoint extension of the linearized DAG of our reference prob-

lem is shown in Fig. 1 (c). Equation (14) yields z(1) =
∂y
∂z

T
· y(1) =< y(1),

∂y
∂z > .

Projections of derivative tensors in vector-valued directions are defined to be
invariant with respect to transposition of the vector argument, that is,

< ∇F,x(1) >=< ∇F,x(1)T > (17)

and
< y(1),∇F (x) >=< yT

(1),∇F (x) > . (18)

2.1 Example

For illustration of the algorithmic details behind basic AD we consider the simple
scalar multivariate function

y =

(

n−1
∑

i=0

x2i

)2

that is used in [Nau12a] to illustrate the superiority of adjoint over tangent-linear
mode AD in the context of unconstrained nonlinear programming. Fig. 2 shows
the linearized DAG for n = 3 annotated with the tangent-linear SAC statements.
The corresponding tangent-linear SAC itself is shown in the upper left corner of
Fig. 2. A total of n = 3 runs with x(1) ranging over the Cartesian basis vectors
in IRn return the individual entries of the gradient of y with respect to x at the
current point in y(1), respectively. Neither the vi nor their tangent-linear versions

v
(1)
i need to be stored persistently. Consequently, the memory requirement of the
tangent-linear code is about twice as large as that of the original program.

Fig. 3 shows the same linearized DAG annotated with the adjoint SAC state-
ments. The corresponding adjoint SAC is shown in the upper left corner of Fig. 3.
A single run with y(1) = 1 returns the gradient of y with respect to x at the cur-
rent point in x(1). The vi (or a subset thereof; see [HNP05]) need to be stored
persistently in order to be able to access them in reverse order in the reverse
section of the adjoint code. Thus, the memory requirement of the adjoint code
is of the same order as the number of operations performed by the original pro-
gram. Refer to [Nau12a] for in-depth information on the fundamental structure
of tangent-linear and adjoint code.

3 Tangent-Linear Direct Linear Solver

The chain rule applied to Fig. 1 (b) yields the following tangent-linear version of
the algorithm in Equations (10)–(12):

(

A
b

)

:= P (z) (19)

(

A(1)

b(1)

)

:= P (1)(z, z(1)) =

(

< ∂A
∂z , z

(1) >

< ∂b
∂z , z

(1) >

)

(20)
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0 : ↑ x0 ↑ x
(1)
0

3 : ↑ v20 ↑ c3,0 · v
(1)
0

1 : ↑ x1 ↑ x
(1)
1 2 : ↑ x2 ↑ x

(1)
2

4 : ↑ v21 ↑ c4,1 · v
(1)
1 5 : ↑ v22 ↑ c5,2 · v

(1)
2

6 : ↑ v3 + v4 ↑ c6,3 · v
(1)
3 + c6,4 · v

(1)
4

7 : ↑ v6 + v5 ↑ c7,6 · v
(1)
6 + c7,5 · v

(1)
5

8 : ↑ v27 ↑ c8,7 · v
(1)
7

v0 = x0; v
(1)
0 = x

(1)
0

v1 = x1; v
(1)
1 = x

(1)
1

v2 = x2; v
(1)
2 = x

(1)
2

v3 = v20 ; v
(1)
3 = 2v0 · v

(1)
3

v4 = v21 ; v
(1)
4 = 2v1 · v

(1)
4

v5 = v22 ; v
(1)
5 = 2v2 · v

(1)
5

v6 = v3 + v4; v
(1)
6 = v

(1)
3 + v

(1)
4

v7 = v6 + v5; v
(1)
7 = v

(1)
6 + v

(1)
5

v8 = v27 ; 2v7 · v
(1)
7

y = v8; y(1) = v
(1)
8

c3,0 = 2 · v0

c6,3 = 1

c4,1 = 2 · v1 c5,2 = 2 · v2

c6,4 = 1

c8,7 = 2 · v7

c7,6 = 1

c7,5 = 1

Fig. 2. Tangent-Linear AD illustrated for y =
(
∑n−1

i=0 x2
i

)2
and n = 3; The tangent-linear SAC

shown in the upper left corner is derived from the displayed tangent-linear linearized DAG.

0 : ↑ x0 ↓ c3,1 · v3(1)

3 : ↑ v20 ↓ c6,3 · v6(1)

1 : ↑ x1 ↓ c4,1 · v4(1) 2 : ↑ x2 ↓ c5,1 · v5(1)

4 : ↑ v21 ↓ c6,4 · v6(1) 5 : ↑ v22 ↓ c7,5 · v7(1)

6 : ↑ v3 + v4 ↓ c7,6 · v7(1)

7 : ↑ v6 + v5 ↓ c8,7 · v8(1)

8 : ↑ v27 ↓ y(1)

v0 = x0; v1 = x1; v2 = x2

v3 = v20 ; v4 = v21 ; v5 = v22
v6 = v3 + v4; v7 = v6 + v5
v8 = v27 ; y = v8
v8(1) = y(1); v7(1) = 2v7 · v8(1)
v6(1) = v5(1) = v7(1); v3(1) = v4(1) = v6(1)
v2(1) = 2v2 · v5(1); v1(1) = 2v1 · v4(1); v0(1) = 2v0 · v3(1)
x2(1) = v2(1); x1(1) = v1(1); x0(1) = v0(1)

c3,0 = 2 · v0

c6,3 = 1

c4,1 = 2 · v1 c5,2 = 2 · v2

c6,4 = 1

c8,7 = 2 · v7

c7,6 = 1

c7,5 = 1

Fig. 3. Adjoint AD illustrated for y =
(
∑n−1

i=0 x2
i

)2
and n = 3; The adjoint SAC shown in the

upper left corner is derived from the displayed adjoint linearized DAG.

9



x := S(A,b) (21)

x(1) := S(1)(A,A(1),b,b(1)) =<
∂x

∂A
,A(1) > + <

∂x

∂b
,b(1) > (22)

y := p(x) (23)

y(1) := p(1)(x,x(1)) =<
∂y

∂x
,x(1) > . (24)

3.1 Discrete Version

A fully discrete version of Equations (19)–(24) is obtained by applying tangent-
linear mode AD to the implementation of Equations (10)–(12). Conceptually,
each operation is augmented with its tangent-linear counterpart resulting roughly
in a duplication of the computational cost as well as the memory requirement.
An example that illustrates the application of our AD tool dco (version 0.9;
[Nau12b]) introduced in [Nau12a] to an LU -factorization and the following for-
ward and backward substitutions is presented in Appendix A. Note that the
computational cost of evaluating Equation (22) becomes O(n3), which will be
improved through the exploitation of mathematical insight in the following sec-
tion.

3.2 Continuous Version

Tangent-linear versions of P and p, called in Equation (20) and Equation (24),
respectively, are assumed to be available. For example, they can be obtained
through application of dco in tangent-linear mode to the given implementations
of P and p similar to Section 3.1. Our focus is on the efficient evaluation of
Equation (22).

Computation of < ∂x
∂b

, b(1) > Partial differentiation of Equation (4) with
respect to b yields

<
∂(Ax)

∂A
,
∂A

∂b
(=0)

> +
∂(Ax)

∂x
(=A)

,
∂x

∂b
>=

∂b

∂b
(25)

and, hence,

A ·
∂x

∂b
= In, (26)

where In ∈ IRn×n denotes the identity in IRn. The three-tensor ∂A
∂b ∈ IR(n×n)×n

and, hence, the projection < ∂(Ax)
∂A , ∂A∂b > vanish identically. The term A · ∂x

∂b is
the usual product of two n× n matrices.

Multiplication of both sides of Equation (26) with b(1) from the right yields

A ·
∂x

∂b
· b(1) = A· <

∂x

∂b
,b(1) >= b(1). (27)

Consequently, the second term in Equation (22) can be computed by replacing
the original right-hand side in Equation (4) with b(1). A previously computed
factorization of A should be reused, thus, reducing the computational cost locally
from O(n3) to O(n2).
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Computation of < ∂x
∂A

, A(1) > Partial differentiation of Equation (4) with
respect to A yields

<
∂(Ax)

∂A
,

∂A

∂A
(=In×n)

> + <
∂(Ax)

∂x
(=A)

,
∂x

∂A
>=

∂b

∂A
(=0)

, (28)

where In×n ∈ IR(n×n)×(n×n) denotes the identity in IRn×n, which yields

∂(Ax)

∂A
+ <

∂(Ax)

∂x
,
∂x

∂A
>=

∂b

∂A
(=0)

. (29)

and, hence,

<
∂(Ax)

∂x
,
∂x

∂A
>= −

∂(Ax)

∂A
. (30)

Projection of the two trailing dimensions of both sides of Equation (30) in direc-
tion A(1) yields

<<
∂(Ax)

∂x
,
∂x

∂A
>,A(1) >

(Assoc.)
= < A,<

∂x

∂A
,A(1) >> (31)

(Eq.(15))
= A· <

∂x

∂A
,A(1) > (32)

(Eq.(30))
= − <

∂(Ax)

∂A
,A(1) > (33)

(Lemma 1)
= −A(1) · x (34)

with (Assoc.) denoting the associativity of the projection operation. Conse-
quently, the first term in Equation (22) can be computed by replacing the original
right-hand side in Equation (4) with −A(1) ·x. A previously computed factoriza-
tion of A can be reused thus reducing the computational cost locally from O(n3)
to O(n2).

Lemma 1. Let A,A(1) ∈ IRn×n and x ∈ IRn. Then

<
∂(Ax)

∂A
,A(1) >= A(1) · x.

Proof. The entries of the three-tensor ∂(Ax)
∂A are the following:

[

∂(Ax)

∂A

]

i,j,k

=
∂[Ax]i
∂[A]j,k

=
∂
∑n−1

l=0 ([A]i,l · [x]l)

∂[A]j,k
=

{

[x]k for i = j

0 otherwise.
(35)

It follows that the sum

[

<
∂(Ax)

∂A
,A(1) >

]

i

=
n−1
∑

j=0

n−1
∑

k=0

[

∂(Ax)

∂A

]

i,j,k

· [A(1)]j,k (36)

collapses to
n−1
∑

k=0

[x]k · [A
(1)]i,k = [A(1) · x]i.
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3.3 Examples

Discrete tangents of LU, QR, and LLT factorizations followed by the corre-
sponding substitution procedures can be obtained in a straight-forward fashion
by applying tangent-linear mode AD to the given implementations as outlined
in Section 3. In the following we focus on the continuous versions.

LU-Factorization Equations (19) and (20) are followed by

(x, L, U) = S(A,b) (37)

x(1) = B(U,F (L,b(1))) +B(U,F (L,−xT ·A(1))) (38)

and by Equations (23) and (24), where F,B : IRn·(n+1)/2 × IRn → IRn denote
solvers for lower and upper triangular systems by forward and backward substitu-
tion, respectively. Refer to Appendix B for a corresponding implementation that
has been verified against the discrete tangent-linear version from Appendix A.

QR-Factorization Fully discrete tangent-linear QR factorization adds little
insight and is hence omitted. Its computational complexity is O(n3) to be reduced
to O(n2) by the following continuous approach, where Equations (19) and (20)
are followed by

(x, Q,R) = S(A,b) (39)

x(1) = B(R,QT · b(1)) +B(R,−QT · xT ·A(1)) (40)

and by Equations (23) and (24). The reduced computational complexity follows
from b(1) = A· < ∂x

∂b ,b
(1) >= Q · R· < ∂x

∂b ,b
(1) > and, hence, R· < ∂x

∂b ,b
(1) >=

Q−1 · b(1) = QT · b(1).

LLT -Factorization If A is symmetric positive definite within the range of P ,
then x depends only on the lower (or upper) triangular submatrix of A. Hence,
U can simply be replaced by LT in Section 3.3.

4 Adjoint Direct Linear Solver

An adjoint code starts with an (augmented) forward section to record all data
required for the data flow reversal due to the propagation of adjoints in the
reverse section. See [Nau12a] for details.

4.1 Discrete Version

The chain rule as illustrated in Fig. 1 (c) yields the following discrete adjoint
version of the algorithm in Equations (10)–(12):

forward section:
((

A
b

)

, τ0

)

:= P↓(z) (41)

(x, τ1) := S↓(A,b) (42)

(y, τ2) := p↓(x) (43)

12



reverse section:

x(1) := p(1)(τ2, y(1)) ≡< y(1),
∂y

∂x
> (44)

(

A(1)

b(1)

)

:= S(1)(τ1,x(1)) ≡

(

< x(1),
∂x
∂A >

< x(1),
∂x
∂b >

)

(45)

z(1) := P(1)(τ0, A(1),b(1)) ≡<

(

A(1)

b(1)

)

,

(

∂A
∂z
∂b
∂z

)

> . (46)

Data that is required for the correct evaluation of adjoints in the reverse section
is recorded on a tape τ = (τ0, τ1, τ2) by running P↓, S↓, and p↓ in the forward
section. Typically, the term tape is used in the context of implementations of AD
by overloading. Here we allow for a relaxed interpretation that includes required
data stored in the augmented forward sections of adjoint codes generated by
source code transformation.

The size of the memory occupied by τ1 is O(n3). The computational complex-
ity of its interpretation in Equation (45) is also O(n3). Both can be reduced to
O(n2) through the exploitation of mathematical insight in the following section.

4.2 Continuous Version

We aim to avoid the recording of the tape τ1 in Equation (42) and hence its
interpretation in Equation (45) yielding the following adjoint code:

forward section:
((

A
b

)

, τ0

)

:= P↓(z) (47)

x := S(A,b) (48)

(y, τ2) := p↓(x) (49)

reverse section:

x(1) := p(1)(τ2, y(1)) ≡< y(1),
∂y

∂x
> (50)

(

A(1)

b(1)

)

:= S(1)(A,b,x(1)) ≡

(

< x(1),
∂x
∂A >

< x(1),
∂x
∂b >

)

(51)

z(1) := P(1)(τ0, A(1),b(1)) ≡<

(

A(1)

b(1)

)

,

(

∂A
∂z
∂b
∂z

)

> . (52)

It remains to show how to evaluate Equation (51).

Computation of b(1) ≡< x(1),
∂x
∂b

> From Equation (26) follows

∂x

∂b
= A−1. (53)

Multiplication of both sides of Equation (53) with xT
(1) from the left yields

xT
(1) ·

∂x

∂b
=< x(1),

∂x

∂b
>T= xT

(1) ·A
−1 (54)

13



and hence

< x(1),
∂x

∂b
>T ·A = xT

(1). (55)

Transposing Equation (55) gives

AT · < x(1),
∂x

∂b
>= AT · b(1) = x(1) (56)

whose solution can be obtained at the computational cost of O(n2) using the
previously computed factorization of A.

Computation of A(1) ≡< x(1),
∂x
∂A

> Projection of the leading dimension of
Equation (30) in direction x(1) yields

< x(1), <
∂(Ax)

∂x
,
∂x

∂A
>>=< x(1),

∂(Ax)

∂A
> . (57)

Transposition and exploitation of associativity on the left-hand side and applica-
tion of Equation (56) to the right-hand side yields as an immediate consequence
of Equation (18)

AT · < x(1),
∂x

∂A
>

(=A(1))

= − << AT ,b(1) >,
∂(Ax)

∂A
> (58)

and, hence,

A(1) = − < b(1),
∂(Ax)

∂A
>= −b(1) · x

T (59)

as shown in the following lemma.

Lemma 2. Let A ∈ IRn×n and b(1),x ∈ IRn. Then

< b(1),
∂(Ax)

∂A
>= b(1) · x

T

Proof. With the three-tensor ∂(Ax)
∂A as in Lemma 1 we get

[

< b(1),
∂(Ax)

∂A
>

]

j,k

=
n−1
∑

i=0

[b(1)]i ·

[

∂(Ax)

∂A

]

i,j,k

(60)

Eq.(35))
= [b(1)]j ·

[

∂(Ax)

∂A

]

j,j,k

(61)

= [b(1)]j · [x]k = [b(1) · x
T ]j,k. (62)

Note that the memory overhead induced by the continuous adjoint can even be
reduced to O(n) through exploitation of the unit rank of A(1). The integration of
this feature into our AD software tool set is the subject of an ongoing development
effort.
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4.3 Examples

LU-Factorization A reference implementation of the discrete adjoint using dco
is listed in Appendix C. In the continuous version, Equation (47) is followed by

(x, L, U) = S(A,b) (63)

and by Equation (49) in the forward section and Equation (50) precedes

b(1) = B(LT , F (UT ,x(1))) (64)

A(1) = −b(1) · x
T (65)

and Equation (52) in the reverse section. Refer to Appendix D for a corresponding
implementation that has been validated against the discrete adjoint version from
Appendix C. The unit rank of A(1) can be exploited by storing b(1) and x instead
of A(1) thus reducing the memory requirement locally from O(n2) to O(n).

QR-Factorization Equation (47) is followed by

(x, Q,R) = S(A,b) (66)

and by Equation (49) in the forward section and Equation (50) precedes

b(1) = Q · F (RT ,x(1)) (67)

A(1) = −b(1) · x
T (68)

and Equation (52) in the reverse section. The computational complexity of the
adjoint linear solver is reduced to O(n2) due to x(1) = AT ·b(1) = (Q ·R)T ·b(1) =

RT ·QT · b(1) and, hence, b
(1) can be obtained by multiplying the result of the

solution of RT · (QT · b(1)) = x(1) by forward substitution with Q−T = Q.

LLT -Factorization If A is symmetric positive definite within the range of P ,
then U can simply be replaced by LT in Section 4.3 similar to Section 3.3.

5 Case Study

We consider the solution u∗ = u∗(x, z) of the one-dimensional linear differential
equation

∇2(z · u∗) = 0 on Ω = (0, 1) (69)

u∗ = 1 and z = 1 on ∂Ω (70)

(71)

with parameter z = z(x). For given measurements um = um(x) we consider the
following parameter estimation problem for z

z∗ = argmin
z∈IR

J(z) (72)
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with
J(z) = ‖u∗ − um‖22 . (73)

The measurements are generated by a given set of parameters (the wanted pa-
rameter distribution z∗(x)). An equidistant second-order central finite difference
discretization results for a given u (as in the previous sections, discretized and,
hence, vector-valued variables are written as bold letters) in the residual function

[r]i =
1

∆2
· ([z]i−1 · [u]i−1 − 2 · [z]i · [u]i + [z]i+1 · [u]i+1) (74)

with ∆ = 1/n and n the number of discretization points yielding the linear
system

∇r|u≡0 · u
∗ = −r|u≡0 . (75)

To ensure consistency with the notation used throughout the previous sections,
we use subscripted square brackets to denote accesses to individual tensor, resp.
vector, entries.

In order to solve the parameter estimation problem, we apply a steepest
descent algorithm to the discrete objective J(z) as follows

zi+1 = zi −∇J(zi) , (76)

where the computation of the gradient of J at the current iterate zi includes the
differentiation of the solution process for u∗, i. e., the differentiation of solver for
the linear system in Equation (75). Extension of the given example to the use of
Quasi-Newton methods (for example, BFGS) is straight forward.

0 0.2 0.4 0.6 0.8
0.8

0.85

0.9

0.95

x

u
(x

)

measurements um = u∗(z∗)

fitted solution u∗(zn)

(a) The measured and fitted solution u(x)

0 0.2 0.4 0.6 0.8

1.05

1.1
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1.25

x

z
(x

)

real parameter z∗

fitted parameters zn

starting value z0

(b) The real and the fitted parameter z(x)

Fig. 4. Visualization of the parameter fitting problem Equation (72)

The preprocessor P (z) computes the Jacobian matrix ∇r as well as the resid-
ual r. The postprocessor p(u) computes the cost functional J(z).

Fig. 4 shows the measured solution um, the fitted solution u∗(zn) as well
as the starting parameter set z0, the real (wanted) parameter z∗ and the fitted
parameter zn after n = 3 steepest descent steps.

In the following we compare the run time and memory consumption of the
linear solver for the discrete and continuous methods and we show the impact
on the overall performance of the parameter fitting problem.
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5.1 Tangent-Linear Mode

Fig. 5(a) shows in a double logarithmic scale the run time for the solution of the
linear system and the overhead introduced by the discrete and continuous meth-
ods for the computation of the required derivatives. The overhead of the discrete
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Fig. 5. Performance of tangent-linear mode.

method is approximately identical to the passive execution, which is consistent
with the fact that the discrete tangent-linear method roughly duplicates every
floating point operation. Both, the passive solution of the linear system and the
discrete overhead have a computational complexity of O(n3). The continuous
overhead is merely O(n2).

n speed-up

50 1.17

100 1.31

200 1.54

400 1.69

Table 1. Overall speed-up of continuous versus discrete tangent-linear mode.

In Fig. 5(b) the overall performance for the steepest descent algorithm is
shown. The difference between the continuous and the discrete approaches in-
creases with growing problem dimension n, and even the speed-up increases for
the continuous approach (see Table 1).

5.2 Adjoint Mode

In Fig. 6 a comparison for the discrete and continuous adjoint approaches is
shown including the run time overhead for the adjoint computation, the tape
memory usage, and the overall performance of the steepest descent algorithm.
The ratio of the discrete run time overhead and the passive run time in Fig. 6(a)
is ≈ 8, while the ratio is only ≈ 0.03 for the continuous approach. For increasing
problem size n, the discrete ratio stays constant, while the continuous ratio will
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decrease further. The amount of tape memory needed grows – as expected – with
O(n3) and O(n2) for the discrete and the continuous approaches, respectively
(see Fig. 6(b)). The overall speed-up of the steepest descent algorithm increases
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Fig. 6. Performance of adjoint mode.

significantly faster than in the tangent-linear case as shown in Table 2.

n speed-up

50 1.26

100 1.69

200 2.33

400 3.5

Table 2. Overall speed-up of continuous versus discrete adjoint mode.

6 Conclusion and Outlook

Simulation codes in Computational Science, Engineering, and Finance contain a
hierarchy of calls to numerical algorithms ranging from (basic) linear algebra to
optimization routines and including other special function such as interpolation
or integration routines. Knowledge about the partial derivatives of the respective
relevant outputs with respect to inputs enable us to treat such functions as
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intrinsic in the context of AD. Significant improvements can be made in terms
of computational cost and memory requirement. Each algorithm needs to be
analyzed individually for this purpose.

In this paper, we consider direct solvers for systems of n linear equations
as potential intrinsics of AD tools. Our analysis shows that AD of such solvers
should be avoided. The overhead in the computational cost induced by the prop-
agation of directional derivatives or adjoints can thus be reduced from O(n3)
to O(n2). The additional memory requirement of adjoint mode becomes O(n2)
(potentially even O(n)) compared to O(n3).

Linear solvers are at the core of many numerical algorithms including nonlin-
ear solvers, optimizers, and interpolation methods. Hence, they should be treated
according to the results in this paper even if the enclosing algorithm cannot be
made intrinsic in the context of AD. Many of them can (and should) be made
AD intrinsics as illustrated by ongoing research.

At the algorithmic level, iterative linear solvers can be treated similar to their
direct counterparts. For example, in adjoint mode, the original linear system is
solved within the forward section of the enclosing adjoint code followed by the
iterative solution of the adjoint linear system in the reverse section. As a proof of
concept we have successfully reimplemented the case study from Section 5 using a
basic GMRES [SS86] solver. The error in the solution of the adjoint system can be
expected to depend on the error in the original solution. A detailed convergence
analysis is the subject of ongoing work.
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A Discrete Tangent-Linear Solver

Throughout this appendix we apply basic LU -factorization followed by forward
and backward substitution to the linear system

(

1
2

1
3

1
5

3
4

)

·

(

x0
x1

)

=

(

9
11

)

.

Discrete tangent-linear and adjoint versions are generated by version 0.9 of dco
as discussed in detail in [Nau12a]. dco is available for downloading on

www.siam.org/books/se24.

There is also a user guide to dco and to version 0.9 of the derivative code compiler
dcc. The following source code is available for downloading under

www.stce.rwth-aachen.de/publications/Naumann2012DLS.

1 #inc lude <iostream>

2 us ing namespace std ;
3

4 // d e c l a r a t i o n o f dco ’ s
5 // tangent−l i n e a r 1 st−order s c a l a r type
6 #inc lude ” dco t1 s / dco t1 s type . hpp”
7

8 // dimension o f l i n e a r system
9 const i n t n=2;

10

11 // L∗U
12 // Fac t o r i z a t i on in tangent−l i n e a r mode
13 void LU( dco t1 s type ∗∗ A) {
14 f o r ( i n t k=0;k<n ; k++) {
15 f o r ( i n t i=k+1; i<n ; i++) A[ i ] [ k]=A[ i ] [ k ] /A[ k ] [ k ] ;
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16 f o r ( i n t j=k+1; j<n ; j++)
17 f o r ( i n t i=k+1; i<n ; i++)
18 A[ i ] [ j ]=A[ i ] [ j ]−A[ i ] [ k ]∗A[ k ] [ j ] ;
19 }
20 }
21

22 // L∗b
23 // Forward s ub s t i t u t i o n in tangent−l i n e a r mode
24 void F( dco t1 s type ∗∗ A, dco t1 s type ∗ b) {
25 f o r ( i n t i =0; i<n ; i++)
26 f o r ( i n t j =0; j<i ; j++)
27 b [ i ]=b [ i ]−A[ i ] [ j ]∗b [ j ] ;
28 }
29

30 // U∗b
31 // Backward s ub s t i t u t i o n in tangent−l i n e a r mode
32 void B( dco t1 s type ∗∗ A, dco t1 s type ∗ b) {
33 f o r ( i n t i=n−1; i>=0; i−−) {
34 f o r ( i n t j=n−1; j>i ; j−−)
35 b [ i ]=b [ i ]−A[ i ] [ j ]∗b [ j ] ;
36 b [ i ]=b [ i ] /A[ i ] [ i ] ;
37 }
38 }
39

40 i n t main ( ) {
41 // a l l o c a t i o n o f a c t i v e data as o f dco ’ s
42 // tangent−l i n e a r 1 st−order s c a l a r type
43 dco t1 s type ∗b=new dco t1 s type [ n ] ;
44 dco t1 s type ∗∗A=new dco t1 s type ∗ [ n ] ;
45 f o r ( i n t i =0; i<n ; i++) A[ i ]=new dco t1 s type [ n ] ;
46

47 // Jacobian in d i s c r e t e tangent−l i n e a r mode
48 //
49 // d i r e c t i o n a l d e r i v a t i v e s o f A range over
50 // the Cartes ian ba s i s v e c t o r s in Rˆ(n x n)
51 f o r ( i n t i =0; i<n ; i++)
52 f o r ( i n t j =0; j<n ; j++) {
53 A[ 0 ] [ 0 ] = 1 . / 2 ; A[ 0 ] [ 1 ] = 1 . / 3 ; A[ 1 ] [ 0 ] = 1 . / 5 ; A[ 1 ] [ 1 ] = 3 . / 4 ;
54 b [ 0 ]= 9 . ; b [ 1 ]=1 1 . ;
55 A[ i ] [ j ] . t =1;
56 LU(A) ; F(A, b) ; B(A, b) ;
57 cout << ”dx/dA[” << i << ” ] [ ” << j << ”]=( ” ;
58 f o r ( i n t i i =0; i i <n ; i i ++) cout << b [ i i ] . t << ” ” ;
59 cout << ”) ” << endl ;
60 }
61 // d i r e c t i o n a l d e r i v a t i v e s o f b range over
62 // the Cartes ian ba s i s v e c t o r s in Rˆn
63 f o r ( i n t i =0; i<n ; i++) {
64 A[ 0 ] [ 0 ] = 1 . / 2 ; A[ 0 ] [ 1 ] = 1 . / 3 ; A[ 1 ] [ 0 ] = 1 . / 5 ; A[ 1 ] [ 1 ] = 3 . / 4 ;
65 b [ 0 ]= 9 . ; b [ 1 ]=1 1 . ;
66 b [ i ] . t=1;
67 LU(A) ; F(A, b) ; B(A, b) ;
68 cout << ”dx/db [ ” << i << ”]=( ” ;
69 f o r ( i n t j =0; j<n ; j++) cout << b [ j ] . t << ” ” ;
70 cout << ”) ” << endl ;
71 }
72

73 // d e a l l o c a t i o n o f a c t i v e data
74 f o r ( i n t i =0; i<n ; i++) d e l e t e [ ] A[ i ] ;
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75 d e l e t e [ ] A; d e l e t e [ ] b ;
76 r e turn 0 ;
77 }

Compilation of the source file and linkage with the implementation of dco’s
tangent-linear 1st-order scalar type dco t1s type yields an executable that gener-
ates the following output:

dx/dA[0][0]=(-24.3243, 6.48649)

dx/dA[0][1]=(-29.1892, 7.78378)

dx/dA[1][0]=(10.8108, -16.2162)

dx/dA[1][1]=(12.973, -19.4595)

dx/db[0]=(2.43243, -0.648649)

dx/db[1]=(-1.08108, 1.62162)

B Continuous Tangent-Linear Solver

1 #inc lude <iostream>

2 us ing namespace std ;
3

4 // dimension o f l i n e a r system
5 const i n t n=2;
6

7 // L∗U
8 // Result o f f a c t o r i z a t i o n to be reused
9 // f o r computation o f d i r e c t i o n a l d e r i v a t i v e s

10 // with r e sp e c t to system matrix and r ight−hand s i d e
11 void LU( double ∗∗ A) {
12 f o r ( i n t k=0;k<n ; k++) {
13 f o r ( i n t i=k+1; i<n ; i++) A[ i ] [ k]=A[ i ] [ k ] /A[ k ] [ k ] ;
14 f o r ( i n t j=k+1; j<n ; j++)
15 f o r ( i n t i=k+1; i<n ; i++)
16 A[ i ] [ j ]=A[ i ] [ j ]−A[ i ] [ k ]∗A[ k ] [ j ] ;
17 }
18 }
19

20 // L∗b
21 // Forward s ub s t i t u t i o n r equ i r ed f o r s o l u t i o n
22 // and f o r d i r e c t i o n a l d e r i v a t i v e with r e sp e c t to
23 // r ight−hand s i d e
24 void F( double ∗∗ A, double ∗ b) {
25 f o r ( i n t i =0; i<n ; i++)
26 f o r ( i n t j =0; j<i ; j++)
27 b [ i ]=b [ i ]−A[ i ] [ j ]∗b [ j ] ;
28 }
29

30 // U∗b
31 // Backward s ub s t i t u t i o n r equ i r ed f o r s o l u t i o n
32 // and f o r d i r e c t i o n a l d e r i v a t i v e with r e sp e c t to
33 // r ight−hand s i d e
34 void B( double ∗∗ A, double ∗ b) {
35 f o r ( i n t i=n−1; i>=0; i−−) {
36 f o r ( i n t j=n−1; j>i ; j−−)
37 b [ i ]=b [ i ]−A[ i ] [ j ]∗b [ j ] ;
38 b [ i ]=b [ i ] /A[ i ] [ i ] ;
39 }
40 }
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41

42 i n t main ( ) {
43 // dup l i c a t i on o f a c t i v e data segment
44 double ∗b=new double [ n ] ;
45 double ∗ b t1 s=new double [ n ] ;
46 double ∗∗A=new double ∗ [ n ] ;
47 f o r ( i n t i =0; i<n ; i++) A[ i ]=new double [ n ] ;
48 double ∗∗A t1s=new double ∗ [ n ] ;
49 f o r ( i n t i =0; i<n ; i++) A t1s [ i ]=new double [ n ] ;
50

51 // Jacobian in cont inuous tangent−l i n e a r mode
52 A[ 0 ] [ 0 ] = 1 . / 2 ; A[ 0 ] [ 1 ] = 1 . / 3 ; A[ 1 ] [ 0 ] = 1 . / 5 ; A[ 1 ] [ 1 ] = 3 . / 4 ;
53 b [ 0 ]= 9 . ; b [ 1 ]=1 1 . ;
54 // s o l u t i o n o f l i n e a r system
55 LU(A) ; F(A, b) ; B(A, b) ;
56

57 // d i r e c t i o n a l d e r i v a t i v e s A t1s o f A range over
58 // the Cartes ian ba s i s v e c t o r s in Rˆ(n x n)
59 // to compute r ight−hand s i d e s ( s ee Eq . (38) )
60 f o r ( i n t i =0; i<n ; i++)
61 f o r ( i n t j =0; j<n ; j++) {
62 f o r ( i n t i i =0; i i <n ; i i ++)
63 f o r ( i n t j j =0; j j<n ; j j++) A t1s [ i i ] [ j j ]=0;
64 A t1s [ i ] [ j ]=1;
65 f o r ( i n t i i =0; i i <n ; i i ++) {
66 b t1 s [ i i ]=0;
67 f o r ( i n t j j =0; j j<n ; j j++) b t1 s [ i i ]−=A t1s [ i i ] [ j j ]∗b [ j j ] ;
68 }
69 // e x i s t i n g f a c t o r i z a t i o n o f A i s reused to s o l v e the
70 // tangent−l i n e a r sytem
71 F(A, b t1 s ) ; B(A, b t1 s ) ;
72 cout << ”dx/dA[” << j << ” ] [ ” << i << ”]=( ” ;
73 f o r ( i n t i i =0; i i <n ; i i ++) cout << b t1 s [ i i ] << ” ” ;
74 cout << ”) ” << endl ;
75 }
76

77 // d i r e c t i o n a l d e r i v a t i v e s o f b range over
78 // the Cartes ian ba s i s v e c t o r s in Rˆn
79 // y i e l d i n g r ight−hand s i d e s ( s ee Eq . (38) )
80 f o r ( i n t i =0; i<n ; i++) {
81 f o r ( i n t j =0; j<n ; j++) b t1 s [ j ]=0;
82 b t1 s [ i ]=1;
83 // e x i s t i n g f a c t o r i z a t i o n o f A i s reused to s o l v e the
84 // tangent−l i n e a r sytem
85 F(A, b t1 s ) ; B(A, b t1 s ) ;
86 cout << ”dx/db [ ” << i << ”]=( ” ;
87 f o r ( i n t j =0; j<n ; j++) cout << b t1 s [ j ] << ” ” ;
88 cout << ”) ” << endl ;
89 }
90

91 // d e a l l o c a t i o n o f a c t i va t ed data segment
92 f o r ( i n t i =0; i<n ; i++) d e l e t e [ ] A[ i ] ;
93 f o r ( i n t i =0; i<n ; i++) d e l e t e [ ] A t1s [ i ] ;
94 d e l e t e [ ] A; d e l e t e [ ] b ;
95 d e l e t e [ ] A t1s ; d e l e t e [ ] b t1 s ;
96 r e turn 0 ;
97 }
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Compilation of the source file yields an executable that generates the same out-
put as shown in Appendix A.

C Discrete Adjoint Solver

1 #inc lude <iostream>

2 us ing namespace std ;
3

4 // d e c l a r a t i o n o f dco ’ s
5 // ad j o i n t 1 st−order s c a l a r type
6 #inc lude ” dco a1s / dco a1s type . hpp”
7

8 // dimension o f l i n e a r system
9 const i n t n=2;

10

11 // L∗U
12 // Fac t o r i z a t i on i s recorded on tape
13 void LU( dco a1s type ∗∗ A) {
14 f o r ( i n t k=0;k<n ; k++) {
15 f o r ( i n t i=k+1; i<n ; i++) A[ i ] [ k]=A[ i ] [ k ] /A[ k ] [ k ] ;
16 f o r ( i n t j=k+1; j<n ; j++)
17 f o r ( i n t i=k+1; i<n ; i++)
18 A[ i ] [ j ]=A[ i ] [ j ]−A[ i ] [ k ]∗A[ k ] [ j ] ;
19 }
20 }
21

22 // L∗b
23 // Forward s ub s t i t u t i o n i s recorded on tape
24 void F( dco a1s type ∗∗ A, dco a1s type ∗ b) {
25 f o r ( i n t i =0; i<n ; i++)
26 f o r ( i n t j =0; j<i ; j++)
27 b [ i ]=b [ i ]−A[ i ] [ j ]∗b [ j ] ;
28 }
29

30 // U∗b
31 // Backward s ub s t i t u t i o n i s recorded on tape
32 void B( dco a1s type ∗∗ A, dco a1s type ∗ b) {
33 f o r ( i n t i=n−1; i>=0; i−−) {
34 f o r ( i n t j=n−1; j>i ; j−−)
35 b [ i ]=b [ i ]−A[ i ] [ j ]∗b [ j ] ;
36 b [ i ]=b [ i ] /A[ i ] [ i ] ;
37 }
38 }
39

40 i n t main ( ) {
41 // a l l o c a t i o n o f a c t i v e data as o f dco ’ s
42 // ad j o i n t 1 st−order s c a l a r type
43 dco a1s type ∗b=new dco a1s type [ n ] ;
44 dco a1s type ∗∗A=new dco a1s type ∗ [ n ] ;
45 f o r ( i n t i =0; i<n ; i++) A[ i ]=new dco a1s type [ n ] ;
46 // tape
47 extern dco a1 s t ape en t ry dco a1s tape [DCO A1S TAPE SIZE ] ;
48

49 // Jacobian in d i s c r e t e ad j o i n t mode
50 f o r ( i n t i =0; i<n ; i++) {
51 A[ 0 ] [ 0 ] = 1 . / 2 ; A[ 0 ] [ 1 ] = 1 . / 3 ; A[ 1 ] [ 0 ] = 1 . / 5 ; A[ 1 ] [ 1 ] = 3 . / 4 ;
52 i n t va A [ n∗n]={A[ 0 ] [ 0 ] . va ,A [ 0 ] [ 1 ] . va ,A [ 1 ] [ 0 ] . va ,A [ 1 ] [ 1 ] . va } ;
53 b [ 0 ]= 9 . ; b [ 1 ]=1 1 . ;
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54 i n t va b [ n]={b [ 0 ] . va , b [ 1 ] . va } ;
55 // So lu t i on procedure ge t s recorded on tape
56 LU(A) ; F(A, b) ; B(A, b) ;
57 // ad j o i n t s o f s o l u t i o n range over
58 // the Cartes ian ba s i s v e c t o r s in Rˆn
59 dco a1s tape [ b [ i ] . va ] . a=1;
60 // tape ge t s i n t e r p r e t ed in cur rent ad j o i n t d i r e c t i o n
61 d c o a 1 s i n t e r p r e t t a p e ( ) ;
62 cout << ”dx [ ” << i << ” ]/ db=( ” ;
63 f o r ( i n t j =0; j<n ; j++) cout << dco a1s tape [ va b [ j ] ] . a << ” ” ;
64 cout << ”) ” << endl ;
65 cout << ”dx [ ” << i << ” ]/dA=( ” ;
66 f o r ( i n t j =0; j<n ; j++)
67 f o r ( i n t k=0;k<n ; k++)
68 cout << dco a1s tape [ va A [ j ∗n+k ] ] . a << ” ” ;
69 cout << ”) ” << endl ;
70 d c o a 1 s r e s e t t a p e ( ) ;
71 }
72

73 // d e a l l o c a t i o n o f a c t i v e data
74 f o r ( i n t i =0; i<n ; i++) d e l e t e [ ] A[ i ] ;
75 d e l e t e [ ] A; d e l e t e [ ] b ;
76 r e turn 0 ;
77 }

Compilation of the source file and linkage with the implementation of dco’s
adjoint 1st-order scalar type dco a1s type yields an executable that generates the
following output:

dx[0]/db=( 2.43243 -1.08108 )

dx[0]/dA=( -24.3243 -29.1892 10.8108 12.973 )

dx[1]/db=( -0.648649 1.62162 )

dx[1]/dA=( 6.48649 7.78378 -16.2162 -19.4595 )

D Continuous Adjoint Solver

1 #inc lude <iostream>

2 us ing namespace std ;
3

4 // dimension o f l i n e a r system
5 const i n t n=2;
6

7 // L∗U
8 // Result o f f a c t o r i z a t i o n to be reused
9 // f o r computation o f ad j o i n t s

10 // with r e sp e c t to r ight−hand s i d e
11 void LU( double ∗∗ A) {
12 f o r ( i n t k=0;k<n ; k++) {
13 f o r ( i n t i=k+1; i<n ; i++) A[ i ] [ k]=A[ i ] [ k ] /A[ k ] [ k ] ;
14 f o r ( i n t j=k+1; j<n ; j++)
15 f o r ( i n t i=k+1; i<n ; i++)
16 A[ i ] [ j ]=A[ i ] [ j ]−A[ i ] [ k ]∗A[ k ] [ j ] ;
17 }
18 }
19

20 // L∗b
21 // Forward s ub s t i t u t i o n r equ i r ed f o r s o l u t i o n
22 // o f l i n e a r system
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23 void F( double ∗∗ A, double ∗ b) {
24 f o r ( i n t i =0; i<n ; i++)
25 f o r ( i n t j =0; j<i ; j++)
26 b [ i ]=b [ i ]−A[ i ] [ j ]∗b [ j ] ;
27 }
28

29 // U∗b
30 // Backward s ub s t i t u t i o n r equ i r ed f o r s o l u t i o n
31 // o f l i n e a r system
32 void B( double ∗∗ A, double ∗ b) {
33 f o r ( i n t i=n−1; i>=0; i−−) {
34 f o r ( i n t j=n−1; j>i ; j−−)
35 b [ i ]=b [ i ]−A[ i ] [ j ]∗b [ j ] ;
36 b [ i ]=b [ i ] /A[ i ] [ i ] ;
37 }
38 }
39

40 // L∗b
41 // Transposed forward s ub s t i t u t i o n r equ i r ed f o r
42 // ad j o i n t s with r e sp e c t to r ight−hand s i d e
43 void F a1s ( double ∗∗ A, double ∗ b) {
44 f o r ( i n t i =0; i<n ; i++) {
45 f o r ( i n t j =0; j<i ; j++)
46 b [ i ]=b [ i ]−A[ i ] [ j ]∗b [ j ] ;
47 b [ i ]=b [ i ] /A[ i ] [ i ] ;
48 }
49 }
50

51 // U∗b
52 // Transposed backward s ub s t i t u t i o n r equ i r ed f o r
53 // ad j o i n t s with r e sp e c t to r ight−hand s i d e
54 void B a1s ( double ∗∗ A, double ∗ b) {
55 f o r ( i n t i=n−1; i>=0; i−−)
56 f o r ( i n t j=n−1; j>i ; j−−)
57 b [ i ]=b [ i ]−A[ i ] [ j ]∗b [ j ] ;
58 }
59

60 i n t main ( ) {
61 // dup l i c a t i on o f a c t i v e data segment
62 double ∗b=new double [ n ] ;
63 double ∗b a1s=new double [ n ] ;
64 double ∗∗A=new double ∗ [ n ] ;
65 f o r ( i n t i =0; i<n ; i++) A[ i ]=new double [ n ] ;
66 double ∗∗A a1s=new double ∗ [ n ] ;
67 f o r ( i n t i =0; i<n ; i++) A a1s [ i ]=new double [ n ] ;
68

69 // Jacobian in cont inuous ad j o i n t mode
70 A[ 0 ] [ 0 ] = 1 . / 2 ; A[ 0 ] [ 1 ] = 1 . / 3 ; A[ 1 ] [ 0 ] = 1 . / 5 ; A[ 1 ] [ 1 ] = 3 . / 4 ;
71 b [ 0 ]= 9 . ; b [ 1 ]=1 1 . ;
72 // s o l u t i o n o f l i n e a r system
73 LU(A) ; F(A, b) ; B(A, b) ;
74

75 f o r ( i n t i =0; i<n ; i++)
76 f o r ( i n t j =0; j<n ; j++) A a1s [ i ] [ j ]=A[ j ] [ i ] ;
77

78 // ad j o i n t s b a1s o f s o l u t i o n range over
79 // the Cartes ian ba s i s v e c t o r s in Rˆn
80 // to compute r ight−hand s i d e s ( s ee Eq . (64) )
81 f o r ( i n t i =0; i<n ; i++) {
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82 f o r ( i n t j =0; j<n ; j++) b a1s [ j ]=0;
83 b a1s [ i ]=1;
84 F a1s ( A a1s , b a1s ) ; B a1s ( A a1s , b a1s ) ;
85 cout << ”dx [ ” << i << ” ]/ db=( ” ;
86 f o r ( i n t j =0; j<n ; j++) cout << b a1s [ j ] << ” ” ;
87 cout << ”) ” << endl ;
88 // rank−1 ad j o i n t with r e sp e c t to system matrix
89 // ( see Eq . (65) )
90 cout << ”dx [ ” << i << ” ]/dA=( ” ;
91 f o r ( i n t i i =0; i i <n ; i i ++)
92 f o r ( i n t j j =0; j j<n ; j j++)
93 cout << −b a1s [ i i ]∗b [ j j ] << ” ” ;
94 cout << ”) ” << endl ;
95 }
96

97 // d e a l l o c a t i o n o f a c t i va t ed data segment
98 f o r ( i n t i =0; i<n ; i++) d e l e t e [ ] A[ i ] ;
99 f o r ( i n t i =0; i<n ; i++) d e l e t e [ ] A a1s [ i ] ;

100 d e l e t e [ ] A; d e l e t e [ ] b ;
101 d e l e t e [ ] A a1s ; d e l e t e [ ] b a1s ;
102 r e turn 0 ;
103 }

Compilation of the source file yields an executable that generates the same output
as shown in Appendix C.
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2010-20 Wladimir Fridman, Christof Löding, Martin Zimmermann: Degrees of

Lookahead in Context-free Infinite Games

2011-01 ∗ Fachgruppe Informatik: Jahresbericht 2011

2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting

2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems

2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars

2011-06 Johannes Lotz, Klaus Leppkes, and Uwe Naumann: dco/c Derivative

Code by Overloading in C++

2011-07 Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational

Semantics for Activity Diagrams using SMV
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