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Abstract

In this paper we present a new method
(EBBN) that aims at reducing the need to
elicit formidable amounts of probabilities for
Bayesian belief networks, by reducing the
number of probabilities that need to be speci-
fied in the quantification phase. This method
enables the derivation of a variable’s condi-
tional probability table (CPT) in the gen-
eral case that the states of the variable are
ordered and the states of each of its parent
nodes can be ordered with respect to the in-
fluence they exercise. EBBN requires only
a limited amount of probability assessments
from experts to determine a variable’s full
CPT and uses piecewise linear interpolation.
The number of probabilities to be assessed in
this method is linear in the number of condi-
tioning variables. EBBN’s performance was
compared with the results achieved by ap-
plying both the normal copula vine approach
from Hanea & Kurowicka (2007), and by us-
ing a simple uniform distribution.

1 Introduction

In this paper we consider the case of deriving a dis-
crete conditional probability distribution for a node of
a Bayesian belief network based on expert judgement.
There are many issues to consider when deriving a con-
ditional probability distribution via expert judgement
elicitation. The expert assessors will for example use
simplifying heuristics when assessing probabilities to
avoid too complex mental reasoning. These heuristics
might lead to biased assessments. In addition experts
might also be subject to various types of motivational
biases. There is the problem of how to select the
appropriate experts for the elicitation task and how
to properly prepare them for formulating the assess-

ments (e.g. motivating and training them). There is
the choice of which method to use to elicit the prob-
abilities: e.g. a probability-scale, probability-wheel,
gamble-like or adverb-probability matching method?
Renooij (2001) gives a good overview of these issues.
Though acknowledging their importance, in this paper
we do not consider these issues, but focus on reduc-
ing the assessment burden of large discrete conditional
probability distributions.

The number of probabilities that need to be specified
for a node can grow large very easily. For a node with
three states that has a parent node with also three
states, 6 probabilities need to be specified to deter-
mine its conditional probability table (CPT). An ad-
ditional second and third parent node with three states
would consequently require a table of 18 and 54 prob-
abilities, and so on. Apart from the huge amounts of
time it would take to assess all the probabilities for
large CPTs, it can also be questioned to what extent
assessors can be expected to coherently provide the
probabilities at the level of detail required (see e.g.
(Miller 1956) on the limitations of human short term
memory capacity). The elicitation task thus is consid-
ered a major obstacle in the use of BBNs (Druzdzel &
Van der Gaag 1995, Jensen 1995).

There are two ways in which the elicitation task for dis-
crete BBNs can be relieved. The first is to make it eas-
ier for the assessors to provide the probabilistic assess-
ments required. Van der Gaag, Renooij, Witteman,
Aleman & Taal (1999) aim to achieve this by tran-
scribing the conditional probabilities and using a scale
containing both numerical and verbal anchors. But the
effort needed to assess a full CPT using this method,
though reduced, is still exponential in the number of
conditioning variables. The second option for relieving
the elicitation burden is to reduce the number of prob-
abilistic assessments to be made. This can of course be
achieved by reducing the number of conditions (par-
ent nodes) or the number of states of the variables, but
such reductions will often be undesirable (e.g. leading



to loss of detail needed to inform a decision).

The Noisy-OR model, originally introduced by Kim
& Pearl (1983), but more extensively discussed in re-
lation to BBNs by e.g. Heckerman & Breese (1996),
reduces the number of probabilities to be specified by
making additional assumptions about the underlying
causal structure of the variables. For the noisy-OR
model, the number of probabilities needed to deter-
mine the full CPT is linear in the number of condi-
tioning variables, rather than exponential. Although
this can mean a huge reduction in elicitation effort,
the assumptions necessary are strong and all the vari-
ables in the noisy-OR model need to be binary, which
strongly limits the applicability of the method.

The Noisy-MAX model (Dı́ez 1993) can be seen as the
extension of the Noisy-OR to multi-valued variables.
In this model the CPT is derived from ’marginal con-
ditional’ distributions specified for each parent: for
each parent the probabilities conditional on this par-
ent node are specified and subsequently the full CPT
is derived from these conditional probabilities using
the max function. The influences of each of the parent
nodes are treated in this model as independent. So the
joint influence that the parent nodes exercise is fully
determined by their marginal influence and a fixed
function. Zagorecki & Druzdzel (2006) have fitted the
Noisy-MAX model to suitable nodes from three belief
networks for which the CPTs where already specified.
The authors found the model to be able to provide a
good fit to the CPT in about 50% of the cases they
considered.

In this paper we develop and evaluate a methodology,
EBBN, for deriving a node’s CPT in the general case
that the states of the node are ordered and the states
of each of its parent nodes can be ordered with re-
spect to the influence these parent nodes have on this
node of interest. In this method only a (small) part
of the CPT- describing the joint influence of the par-
ents in contrast with the marginal influence elicited in
the Noisy-MAX model - is elicited. The conditional
probabilities that are not directly elicited are derived
using an interpolation method based on the ranks of
parent node states. The number of probabilities to be
assessed is linear in the number of parent nodes. Since
the method approximates the probabilities that are
not directly assessed, it will contain inaccuracies. Like
Van der Gaag et al. (1999) we therefore propose to re-
gard and use this method as a first step in an iterative
procedure of stepwise refinement of probability assess-
ments, like described in (Coupé, Peek, Ottenkamp &
Habbema 1999).

While testing this method three relevant alternatives
were presented. Bonafede & Giudici (2007) have de-

veloped a method for deriving a discrete conditional
probability distribution based on the marginal distri-
butions, correlation coefficients and standardised joint
moments. Yet, this method also requires all the vari-
ables to be binary, and closed-form solutions have only
been derived for up to three conditioning variables
(parent nodes). Secondly Hanea & Kurowicka (2007)
provide a method for determining a CPT based on
the copula vine approach (Bedford & Cooke 2002)
that uses similar prior information: marginal distri-
butions and adjusted (conditional) rank correlations.
This method also provides a means for deriving the
CPT in the general case that the variables are ordinal
and the influences are monotone, although it is not
clear to us if and how the prior assessments needed
can be elicited accurately from experts. In Section 4
we compare the results of the method developed in
this paper with the copula vine approach of Hanea &
Kurowicka, for which the required prior assessments
are derived from a fully specified CPT.

Very closely related to our method is the method pre-
sented by Tang & McCabe (2007). These authors also
propose the use of piecewise linear interpolation to ap-
proximate not-elicited conditional probabilities. Fur-
thermore they introduce the concepts of dominant and
important factors, whilst we use positive and nega-
tive dominance and parent weights. Yet, where Tang
& McCabe, like Bonafede & Giudici, restrict their
method to work with binary variables only, the method
we introduce in this paper works with discrete vari-
ables in general, under the above described conditions
of ordinality of the variables. It should be noted that
the development of our method has taken place inde-
pendently of that of Tang & McCabe.

In the next section we will introduce our alternative
elicitation method for BBNs, EBBN, which is aimed
at reducing the elicitation burden. In Section 3 we dis-
cuss when we can regard an approximation of a CPT
to be ‘good’, providing the means to assess the perfor-
mance of the proposed method and compare it with
the copula vine approach (Section 4). In the final sec-
tion we present our conclusions and suggestions for
future work.

2 The EBBN Method

We regard the problem of expert assessment of the
probability distribution of a discrete variable Xc (a
node in a BBN), conditional on a set of two or more
discrete variables, which we will denote with pa(Xc)
(the set of parent nodes). We require (1) the values of
Xc to be ordered, and (2) that the values of each of
the elements of pa(Xc) can be ordered such that each
of these variables have either a positive or a negative



influence on Xc. By stating that Xk ∈ pa(Xc) has a
positive influence on Xc, denoted by S+(Xk, Xc), we
mean that observing a higher value for Xk does not
decrease the likelihood of higher values of Xc, regard-
less of the values of the other variables pa(Xc) \ Xk.
We take assignment a = {xj , . . . , xu} to be an instan-
tiation of the set of pa(Xc) = {Xj, . . . , Xu}. Formally
we define Xk ∈ pa(Xc) having a positive influence on
Xc, S+(Xk, Xc), as (Wellman 1990): for all values xc

of Xc, for all pairs of distinct values xk,n > xk,o of
Xk, and for all possible assignments a¬k for the set of
pa(Xc) \ Xk,

P (Xc > xc | xk,n, a¬k) ≥ P (Xc > xc | xk,o, a¬k).

The definition of a negative influence, S−(Xk, Xc), is
completely analogous and would involve only reversing
the above inequality.

We define a conditioning variable Xk ∈ pa(Xc) to be
positive dominant, if the following two (sets of) as-
signments of pa(Xc) lead to the same probabilities:
(I) all assignments of pa(Xc) in which Xk is in its
most favourable state for high values of Xc and (II)
the assignment in which each Xl ∈ pa(Xc) is in its
most favourable state for higher values of Xc (i.e. all
Xp ∈ pa(Xc) with S+(Xp, Xc) are at their highest
value, and all Xn ∈ pa(Xc) with S−(Xn, Xc) are at
their lowest value).

So if a positive dominant parent is in its most
favourable state for high values of Xc, then, regardless
of the states of the other parents, Xc will have
the same probabilities as when conditional on the
assignment in which all parent nodes are in their most
favourable state. Negative dominant variables are
defined analogously.

In the remainder of this section we will first discuss the
assessments needed from the expert for the derivation
of the CPT of Xc. We will then show how to obtain
the CPT from these assessments and end the section
with an illustrative example of the method, taken from
the Hailfinder network (Abramson, Brown, Edwards,
Murphy & Winkler 1996).

2.1 Required assessments

It is assumed that the assessor has confirmed that the
values of variable Xc are ordered and that the assessor
can order the values of each of the variables Xk ∈
pa(Xc) such that (s)he judges either S+(Xk, Xc) or
S−(Xk, Xc) to hold. Then the following assessments
are required to determine the CPT for variable Xc with
conditioning variables pa(Xc)

1:

1As mentioned in Section 1 we will not discuss here how
these assessments can be best elicited from the assessor

1. (ordering). For each of the conditioning variables
Xk ∈ pa(Xc): order the values of Xk such that
Xk has either a positive or a negative influence
on Xc. Fix and record this ordering of the values
and the nature of the influence.

2. (typical probabilities). For each of the values xc

of Xc:

(a) determine the assignment pa(Xc) = axc
such

that the probability P (Xc = xc | axc
) is as

large as possible.

(b) assess the probabilities P (Xc | axc
).

Due to dominance of one of the conditioning vari-
ables axc,min

(axc,max
) need not be unique, where

xc,min (xc,max) is the lowest (highest) value of Xc.
Therefore axc,min

(axc,max
) is by default set to be

the assignment in which all the conditioning vari-
ables are in their most favourable state for low
(high) values of Xc, referred to as aneg (apos).

3. (weights). For each of the conditioning variables
Xk ∈ pa(Xc), assess P (Xc = xc,max | aneg,k+)
and P (Xc = xc,min | aneg,k+), where xc,max and
xc,min are resp. the maximum and minimum
value of Xc, and aneg,k+ is the assignment of
pa(Xc) in which Xk is in its most favourable state
for high values of Xc, and all Xl ∈ pa(Xc) \ Xk

are in their least favourable state for higher values
of Xc.

4. (dominance). For each of the conditioning vari-
ables Xk ∈ pa(Xc), determine whether Xk has
either no, a positive or a negative dominance over
Xc.

2.2 Deriving the CPT

The derivation of the CPT of Xc is done in a two-step
procedure, using the assessments from Section 2.1. In
the first step we will express the probabilities P (Xc) as
a function of an influence factor i. In the second step
individual and joint influence factors are determined
for all assignments of pa(Xc), which are then used to
derive the probabilities P (Xc) from the functions of
step 1.

The influence factor i is an expression of the positive-
ness (or negativeness) of the joint influence of the par-
ent variables pa(Xc) on Xc. It is a function of values
of the parent variables, with 0 ≤ i(a) ≤ 1. We set
i(aneg) = 0, where pa(Xc) = aneg is the assignment in
which all the conditioning variables are in their most
favourable state for low values of Xc (see item 2, Sec-
tion 2.1). And, at the other extreme, i(apos) is set to
1. For all other assignments i ∈ (0, 1). If assignment
a2 has a strictly more positive influence on Xc than a1



- i.e. P (Xc > xc | a2) > P (Xc > xc | a1) for all xc

- then the influence factor corresponding to a2 should
be bigger than the influence factor corresponding to
a1.

We make use of two separate influence factors: the in-

dividual influence factor ik for each conditioning vari-
able Xk ∈ pa(Xc) and the joint influence factor ijoint.
As will become more clear later on, ik will contain in-
formation about the influences exercised by each of the
parent variables individually, ijoint about the ‘general
tendency’ of all of the parent influences together.

We determine the individual influence factor ik for
Xk ∈ pa(Xc) as follows:

ik(xk) :=











rank(xk) − 1
rank(xk,max) − 1

if S+(Xk, Xc)

rank(xk,max) − rank(xk)
rank(xk,max) − 1

if S−(Xk, Xc)

(1)
where the rank of the smallest value is set to be 1 and
xk,max is the highest value of Xk. So if Xk ∈ {low,
medium, high} has a positive influence on Xc, we find
that ik(low) = 0, ik(medium) = 0.5 and ik(high) = 1.

The joint influence factor ijoint for assignment
pa(Xc) = a is derived as:

ijoint(a) :=

∑

{k:Xk∈pa(Xc)}

ik(xk) · (rank(xk) − 1)

∑

{k:Xk∈pa(Xc)}

(rank(xk,max) − 1)
(2)

Verify that indeed ijoint(aneg) = 0 and ijoint(apos) =
1. Also note that the individual influence factor of
Xk, ik, is equal to the joint influence factor ijoint if
pa(Xc) = {Xk}, i.e. if the set of parents of Xc merely
consists of Xk.

Step 1. Estimating P (Xc) as a function of joint

influence factor ijoint

In this step P (Xc = xc) is estimated as a function of
joint influence factor ijoint, for each value xc of Xc.
For this we use the orderings determined at item 1
in Section 2.1, and the assignments axc

and proba-
bilities P (Xc = xc | axc

) assessed at 2. We con-
struct the piecewise linear functions fxc

: [0, 1] → [0, 1]
through the points (ijoint(axc

), P (Xc = xc | axc
)). It

can be easily verified that using these linear interpo-
lations ensures that

∑

xc
fxc

(i) = 1, i.e. the sum of
the probabilities of occurrence of the different values
of Xc equals unity for all i ∈ [0, 1]. Coherency requires
that if xc,n > xc,m, also ijoint(axc,n

) > ijoint(axc,m
).

In Figure 1 an example is given for how this estima-
tion of P (Xc) as a function of ijoint might look like.
In this example Xc ∈ {low, medium, high}, and the

points (ijoint(axc
), P (Xc = xc | axc

)) are assessed as
in Table 1.
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Figure 1: Piecewise linear functions through the points
(ijoint(axc

), P (Xc | axc
)) from Table 1.

Table 1: Example assessments of (ijoint(axc
), P (Xc |

axc
)) for Xc ∈ {low, medium, high}

xc ijoint(axc) P (Xc | axc)

low 0 P (Xc = low | alow) = 0.79
P (Xc = medium | alow) = 0.20
P (Xc = high | alow) = 0.01

medium 0.22 P (Xc = low | amedium) = 0.35
P (Xc = medium | amedium) = 0.60
P (Xc = high | amedium) = 0.05

high 1 P (Xc = low | ahigh) = 0.01
P (Xc = medium | ahigh) = 0.14
P (Xc = high | ahigh) = 0.85

Note that pa(Xc) = alow corresponds to the as-
signment pa(Xc) = aneg and ahigh to apos. Hence
ijoint(alow) = 0 and ijoint(ahigh) = 1.

Step 2. Deriving the conditional probabilities

In Step 1 we obtained P (Xc) for all possible values of
ijoint via linear interpolation, and equation (2) pro-
vides us with an expression for ijoint for all assign-
ments pa(Xc) = a. We can now determine P (Xc | a)
via P (Xc | ijoint(a)) from the functions fxc

of Step
1. Yet this mapping from assignments a for the con-
ditioning variables pa(Xc) to an expression ijoint is
not unique. Suppose pa(Xc) = {Xj, Xk, Xl}, Xj and
Xl both exercise the same type of influence (positive
or negative), and Xj , Xk, Xl ∈ {low, medium, high},
then ijoint({medium, medium, medium}) =
ijoint({low, medium, high}) = 0.5. As pointed out
earlier, ijoint is an expression for the ‘general tendency’
of the influence of the conditioning variables. It does
not take into account the (dis)agreement of the influ-
ences of each of the conditioning variables individually.

To account for both the ‘general tendency’ and the
individual influences of the conditioning variables, we



calculate for each conditioning variable Xk ∈ pa(Xc)
the average of the probabilities Pk(Xc | a) over the in-
terval (min(ik(xk), ijoint(a)), max(ik(xk), ijoint(a))).

An example of this average, denoted with Pk(Xc | a),
is illustrated in Figure 2.
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Figure 2: Example of the average probabilities Pk(Xc),
when ik(xk) < ijoint(a)

We derive the desired probabilities P (Xc | a) as the
average over the distributions Pk(Xc | a). Or actually
the weighted average

P (Xc | a) =
∑

k:Xk |pa(Xc)

wk · Pk(Xc | a), (3)

since one parent could have a stronger influence on Xc

than another. For the same relative change in states,
i.e. changes in states resulting in the same absolute
change in each of the individual influence factors, the
probabilities for Xc might change more for one par-
ent variable than for another. Therefore we calculate
the weight wk for each parent Xk ∈ pa(Xc), in the
following way:

wk =
1

2

δ+
k

∑

l:Xl∈pa(Xc)

δ+
l

+
1

2

δ−k
∑

l:Xl∈pa(Xc)

δ−l

(4)

with,

δ+
k = P (Xc = xc,max | aneg,k+) − P (Xc = xc,max | aneg)

δ−k = P (Xc = xc,min | aneg) − P (Xc = xc,min | aneg,k+).

For the derivation of the weights we have taken the sit-
uation in which each parent is in its least favourable
state for high values of Xc, aneg, as the base. We
use the probabilities P (Xc = xc,max | aneg,k+) and
P (Xc = xc,min | aneg,k+) assessed at item 3 in Section
2.1. Each δ+

k and δ−k now expresses the changes in the
probabilities of resp. the highest and lowest state of
Xc, if the one parent Xk is set to its most favourable
state for high values of Xc whilst leaving the other
parents in their least favourable states (aneg,k+). We
obtain the weights from these δ’s via the normalisa-
tions (4).

To a large extent the choice of the base assignment
aneg and the probabilities P (Xc = xc,max | aneg,k+)
and P (Xc = xc,min | aneg,k+) to derive the weights is
arbitrary. Even though, we feel the choice for these
assignments is one of the most natural choices that
can be made. And, more importantly, we feel these
assignments are relatively easy for assessors to con-
sider and assess. It is of course possible to use more
assessments to determine the weights more accurately.
However, we feel that the possible added value does
not weigh against the burden of the extra elicitation
effort needed.

We derive the desired probabilities P (Xc | pa(Xc) =
a) by rewriting (3) using (1), (2) and (4), as

P (Xc | pa(Xc) = a) =
∑

k:Xk |pa(Xc)

wk ·

∫ imax,k

imin,k

f(i) · di

imax,k − imin,k

(5)
where imin,k = min(ik(xk), ijoint(a)),
imax,k = max(ik(xk), ijoint(a)) and f(i) =
(

fxc,min
(i), . . . , fxc,max(i)

)

.

Finally, we deal with negative and positive dominance
of one of the parent variables in the following straight-
forward way: for all the assignments ad in which
a negative (positive) dominant parent is in its least
(most) favourable state for high values of Xc, we set
P (Xc | ad) to be equal to P (Xc | aneg) (P (Xc | apos)).
We will now demonstrate the method by means of an
illustrative example.

2.3 Illustrative example from the Hailfinder

network

The example given in this section is based on the Comp-

PlFcst variable from the Hailfinder network (Abramson
et al. 1996). The variable and its parent nodes,
AreaMeso ALS, CldShadeOth, CldShadeConv and Bound-

aries, are depicted in Figure 3. For each of the variables
also the states (discrete values) are given, ordered and
with the highest state on top.

For the variable CompPlFcst we have the fully subjec-
tively specified CPT, consisting of 4·33 ·3 = 324 proba-
bilities. In this example we derive the required assess-
ments for EBBN, as specified in Section 2.1, from this
CPT, but treat them as if they were directly elicited:

1. (ordering). The ordering of the states of the vari-
ables is given in Figure 3, where the highest states
are on top. For the conditioning variables we find
the following influences:
S−(AreaMeso ALS,CompPlFcst); S+(CldShadeOth,CompPlFcst);
S−(CldShadeConv,CompPlFcst); S+(Boundaries,CompPlFcst).
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Figure 3: The variable CompPlFcst and its parent nodes
from the Hailfinder network.

2. (typical probabilities). We find the assignments:
aDecCapIncIns ={StrongUp, Clear, None,
Strong}, aLittleChange ={StrongUp, PC, Some,
Strong} and aIncCapDecIns ={Down, Cloudy,
Marked, None}.
The corresponding conditional probabilities are
given in Table 1 and depicted as a function of
influence factor i in Figure 1, where alow =
aDecCapIncIns, amedium = aLittleChange and
ahigh = aIncCapDecIns.

3. (weights). As assessments of the remaining
probabilities needed to derive the parent weights
we find:

P (Xc = xc,min P (Xc = xc,max

aneg,k+ | aneg,k+) | aneg,k+)

aneg,AreaMeso ALS+ 0.20 0.45

aneg,CldShadeOth+ 0.40 0.30

aneg,CldShadeConv+ 0.52 0.13

aneg,Boundaries+ 0.65 0.05

4. (dominance). No (positive or negative) dominant
parents.

Now we have all the information (containing only 17
probability assessments!) we need to derive all the 324
probabilities of the CPT of CompPlFcst.

By means of an example we calculate the probabili-
ties P (CompPlFcst | pa(CompPlFcst) = aexpl), where
aexpl ={AreaMeso ALS=Down, CldShadeOth=PC, Cld-

ShadeConv=None, Boundaries=Strong}. For these par-
ent node states we find the individual influence fac-
tors: iAreaMeso ALS (Down) = 1, iCldShadeOth (PC) = 1

2 ,

iCldShadeConv (None) = 0 and iBoundaries (Weak) = 0,

and a joint influence factor ijoint(aexpl) = 4
9. So we

see in this case that the individual influence factors of
the parents give a diverse picture, two are very nega-
tive (0), one is between negative and positive (1

2 ) and
one is very positive (1). This is reflected by the joint
influence factor, which has a very average value (0.44),
expressing no general tendency of the parent influences

towards either positive or negative influence.

Based on the assessments and (4), we find the
weights: wAreaMeso ALS = 0.459, wCldShadeOth = 0.303,
wCldShadeConv = 0.165 and wBoundaries = 0.073. We
can now use (5) to derive the desired probabilities
and find P (CompPlFcst | pa(CompPlFcst) = aexpl) =
{0.17, 0.32, 0.51}. We can derive the full CPT of Xc

(consisting of 324 probabilities) in the same way, re-
quiring in this case only 17 probabilities to be assessed.
When we look up the probabilities in de original CPT,
we find P (CompPlFcst | pa(CompPlFcst) = aexpl) =
{0.20, 0.32, 0.48}. The probabilities estimated with the
methodology are in this case ‘not far off’. Yet, before
we can assess how well our method approximates the
directly assessed probabilities, we first need to discuss
how we can measure the quality of the approximation.

3 Approximation of a CPT for a

BBN, when is it ‘good’?

Assuming you have knowledge of the ‘true’ probabili-
ties of a certain CPT, how can you assess the quality
of an approximation to that CPT? A measure to assess
the similarity between two (discrete conditional) prob-
ability distributions, with possibly different support, is
the Jensen-Shannon divergence (Lin 1991). Based on
the Kullback-Leibler divergence, this measure does not
take into account the context of the CPT, the belief
network. Both Henrion (1989) and Chan & Darwiche
(2002) show that inference in a belief network is most
sensitive to assessment errors in probabilities that are
close to zero or one.

Druzdzel & Van der Gaag (2000) state that, since inac-
curacies will influence the output of the belief network,
a natural question to ask is how accurate the approxi-
mation should be to arrive at satisfacory behaviour of
the network. In other words: if the network is con-
structed to perform specific queries, does the use of
approximations still lead to acceptable outcomes on
these queries?

Chan & Darwiche (2002) identify three main ap-
proaches in the literature to measure the impact of
a change in probability in a CPT: measuring the abso-
lute change in the probability of a query, the relative
change in the probability of a query or the relative
change in the odds of the query, finding the first to be
the most prevalent in the literature.

Zagorecki & Druzdzel (2006) give two measures to
express the (dis-)similarity of two CPTs for the
same conditional distribution: the Euclidian distance
and the Kullback-Leibler divergence between the two
CPTs. Time and space unfortunately have prohibited
us to implement these measures in the current investi-



gation. We have used the following measures to assess
the performance of the EBBN in the next section:

m1. Average absolute error in probability.

m2. Average Jensen-Shannon divergence: a measure
of the similarity between the ‘true’ CPT and the
approximation to it.

m3. Maximum Jensen-Shannon divergence.

m4. Number of unmatched certainties and impossi-
bilities: the number of times the ‘true’ and the
approximating CPT disagree on probabilities of 0
and 1. As noted above, queries can be very sensi-
tive to extreme probabilities.

m5. % agreement in likelihood ranking: the percent-
age of scenarios in which the likelihood ranking of
the values of the variable is the same for both the
‘true’ CPT as the approximating CPT. As scenar-
ios all logically possible combinations of values of
the neigbouring (i.e. predecessor and descendent)
nodes are taken.

m6. % agreement on most likely state: the percentage
of scenarios in which the most likely state for the
variable is the same for both the ‘true’ CPT as
the approximating CPT. As scenarios all logically
possible combinations of values of the neigbouring
(i.e. predecessor and descendent) nodes are taken.

4 Performance of EBBN

We have investigated the performance of the method-
ology by applying it to a well-known belief network
from the literature that contained suitable large sub-
jectively assessed CPTs, and comparing its perfor-
mance with the copula vine approach from Hanea &
Kurowicka (2007). We found the Hailfinder network
(Abramson et al. 1996) to contain such CPTs.

4.1 Methodology

We have searched for belief networks that contained
nodes that satisfy the following requirements:

• the CPT of the node was subjectively assessed,

• the CPT of the node has to be reasonably chal-
lenging in size for elicitation from an expert. For
this we decided the node needed to have two or
more parents, and

• the states of the node are ordered.

We found these networks are difficult to come by. This
is not surprising of course, since these networks would
require a huge elicitation effort. Practitioners would
usually try to avoid having to specify these large CPTs
because the elicitation process would be too time con-
suming, the very problem we are aiming to deal with
in this article. In the BBN repository of the University
of Pittsburgh2 we found the Hailfinder network, which
does contain 7 nodes that satisfy our requirements.

For the Hailfinder network we created three alterna-
tive versions. In each of these alternative versions we
replaced the CPTs of the 7 nodes satisfying the above
requirements (and kept the remaining CPTs as they
were). In the first alternative implementation these
CPTs were replaced with the approximations resulting
from the method introduced in this paper. We treat
the CPTs from the literature as the ‘true’ CPTs. We
assume that the probabilities needed for our method-
ology would have been assessed as they are in these
CPTs and treat the difference between approximations
of the method and the corresponding CPTs as inaccu-
racies of the approximation. So we have not tried to
find parameters for EBBN that minimise the distance
of the resulting CPT to the original, but have derived
the parameters needed from the original CPT.

The second alternative implementation has the se-
lected 7 CPTs derived according to the copula vine
approach (Hanea, Kurowicka & Cooke 2006). In this
approach a normal copula vine is constructed based on
the marginal distributions of each variable and its con-
ditioning variables (or actually continuous versions of
these discrete marginals) and (conditional) rank corre-
lation coefficients of the variable with each of its con-
ditioning variables. This normal copula vine speci-
fies a joint distribution of the variable and its condi-
tioning variables. Hanea & Kurowicka (2007) describe
how the (conditional) rank correlation coefficients can
be derived from a CPT. If one was to use the copula
vine approach in practice, the marginal distribution of
the variable under consideration and the (conditional)
rank correlations with each of the conditioning vari-
ables would have to be subjectively assessed, which is
not a trivial task. Since we are using the copula vine
approach as a benchmark here, as a different means of
approximating the ‘true’ CPT, we simply derived this
marginal and the correlations from the ‘true’ CPT.
The used marginal and correlations thus represent the
best values that could have been obtained in an elicita-
tion process. After construction we took a large sam-
ple (we used a sample size of 80,000) from the normal

2The belief network models can be found
at the network repository of the Decision Sys-
tems Laboratory of the Univesity of Pittsburgh
(http://genie.sis.pitt.edu/networks.html)



copula vine and estimated the desired copula vine ver-
sion of the CPT from the frequencies in this sample.
We checked that the marginal of the variable under
consideration and the marginals of its parents were
still as specified for the copula.

Finally we constructed a third alternative implemen-
tation of the Hailfinder network in which all altered
CPTs consist of uniform distributions for all assign-
ments of conditioning variables, to serve as a second
benchmark. We have assessed the performance of our
interpolation method and both benchmarks using the
measures specified in Section 3. We found the variable
InsInMt to be a positive dominant parent of CldShade-

Conv, and treated it as such in all three alternative
implementations.

4.2 Results

The results of the comparison of the ‘true’ versions
of the selected 7 CPTs of the Hailfinder network with
each of the three alternative derivations of these CPTs
are given in Table 2 3. The table displays how the
EBBN, copula vine and the uniform versions of the
CPTs score on 9 performance measures. The first four
measures are the measures m1.-m4. from Section 3
for the direct comparison between the ‘true’ and the
approximating versions of the CPTs. The measures in
the last five columns, m1.-m3., m5. and m6. from Sec-
tion 3, consider posterior probabilities for each of the
7 selected nodes under all possible scenarios for neigh-
bouring nodes, i.e. all logically possible combinations
of states of neighbouring nodes (both parent and child
nodes).

For the first seven measures in the table we have that
the smaller the measure, the better the performance
of the approximating CPT on that measure. For the
last two columns to opposite holds: the higher the
percentage, the better the performance. If a number
is underlined in Table 2, this means that the corre-
sponding approximating method (EBBN, copula vine
or uniform) has the best performance for that mea-
surement on that variable.

If we look at the underlined values in Table 2, it seems
that EBBN and the copula vine versions are of compa-
rable performance on all performance measures apart
from ‘unmatched 0/1’, on which EBBN performs best
on all CPTs. It is comforting to see that both EBBN
and the copula vine approach clearly perform better
than when the CPT is populated with merely uni-
form distributions. Further investigation reveals that
the EBBN method scores relatively well on the so
called ‘collector’ variables CombMoisture, CombVerMo

3The EBBN and copula vine versions of the Hailfinder
network (.xdsl format) can be obtained from the authors.

and CombClouds. These are nodes in the Hailfinder
network that “summarize information from different
sources about moisture, vertical motion and clouds, re-
spectively” (Abramson et al. 1996, p.69). The EBBN
method seems a relatively good means to combine sim-
ilar information from different sources, at least for the
Hailfinder network.

5 Conclusions and discussion

In this paper we have developed a method for deriv-
ing large conditional probability tables based on ex-
pert judgement, that can hugely reduce the number
of assessments needed from the experts. The quan-
titative assessments needed from the experts are rel-
atively easy to understand: the experts still need to
assess only probabilities. We believe that the experts
will also be capable of providing the qualitative judge-
ments described in Section 2.1 at items 1, 2(a) and
4.

In order to evaluate the performance of EBBN we ap-
plied it to a well-known belief network from the lit-
erature, the Hailfinder network. EBBN’s performance
was compared with the results achieved by applying
both the normal copula vine approach from Hanea
& Kurowicka (2007), and by using a simple uniform
distribution. The results show that EBBN’s perfor-
mance is comparable to the the performance of the
normal copula vine approach, and distinctly better
than that of the uniform distributions. We believe that
the EBBN method can be a valuable tool for subjec-
tively specifying large CPTs.

In the development of the method, the application to a
real-life example (the Hailfinder network) has proven
very valuable. We would like to test the method on
more examples. But, as noted before, because of cost
and effort required to elicit large CPTs, these exam-
ples are difficult to find. Any help with finding more
examples would be greatly appreciated.

It should be noted that the EBBN method does not
always lead to a large reduction in the number of prob-
abilities that need to be assessed. In fact, the method
could even require more probabilities to be assessed
than there are in the CPT. Roughly this occurs when
the number of states of the variable for which the CPT
is to be derived is greater than the number of condi-
tions (i.e. the number of different assignments of the
conditioning variables).

Finally we would like to remark that the interpolation
used, in its current form, does not take into account
synergetic effects that may exist between conditioning
variables.
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Table 2: Performance of the three approximation methods on the measures specified in Section 3

regarding CPT regarding posteriors in scenarios
unmatched same likelh same most

Variable av abs diff av Je-Sh max Je-Sh 1/0 av abs diff av Je-Sh max Je-Sh ranking likely state
EBBN

CombVerMo 0.074 0.028 0.099 0 (256) 0.034 0.002 0.025 93.6% 96.8%

CombMoisture 0.029 0.010 0.045 3 (64) 0.205 0.031 0.663 72.0% 82.4%

AreaMoDryAir 0.056 0.035 0.148 9 (64) 0.221 0.030 0.178 61.0% 82.0%

CombClouds 0.061 0.021 0.127 0 (27) 0.251 0.025 0.164 78.1% 82.8%

CldShadeOth 0.131 0.058 0.188 18 (144) 0.361 0.047 0.254 60.8% 70.9%

CldShadeConv 0.071 0.034 0.219 1 (36) 0.223 0.029 0.235 62.5% 73.8%

CompPlFcst 0.065 0.013 0.064 0 (324) 0.044 0.003 0.085 91.0% 92.4%

Copula vine
CombVerMo 0.090 0.053 0.314 76 (256) 0.039 0.002 0.037 92.0% 95.2%
CombMoisture 0.075 0.040 0.153 7 (64) 0.274 0.037 0.607 60.0% 73.6%
AreaMoDryAir 0.053 0.023 0.072 16 (64) 0.195 0.019 0.094 61.0% 84.0%
CombClouds 0.105 0.043 0.133 1 (27) 0.315 0.036 0.240 76.6% 78.1%
CldShadeOth 0.103 0.040 0.127 23 (144) 0.279 0.032 0.265 78.1% 83.3%
CldShadeConv 0.056 0.015 0.067 2 (36) 0.157 0.012 0.079 71.2% 78.8%
CompPlFcst 0.143 0.069 0.408 0 (324) 0.085 0.012 0.428 86.9% 88.3%

Uniform
CombVerMo 0.219 0.234 0.549 76 (256) 0.120 0.021 0.229 82.4% 82.4%
CombMoisture 0.130 0.117 0.415 7 (64) 0.797 0.205 0.549 23.2% 23.2%
AreaMoDryAir 0.238 0.273 0.520 16 (64) 0.819 0.218 0.524 25.0% 25.0%
CombClouds 0.289 0.199 0.408 1 (27) 0.810 0.188 0.445 28.1% 29.7%
CldShadeOth 0.293 0.225 0.459 23 (144) 0.747 0.175 0.550 26.2% 41.5%
CldShadeConv 0.149 0.092 0.250 2 (36) 0.404 0.072 0.274 31.2% 50.0%
CompPlFcst 0.142 0.063 0.253 0 (324) 0.089 0.011 0.315 83.4% 85.4%

underlined: best score for the three methods.
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