

Department of Computer Science Technical Report

SAT Solving for Termination Analysis with Polynomial Interpretations

Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René Thiemann, and Harald Zankl

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2007-02

RWTH Aachen · Department of Computer Science · March 2007 (revised version)

The publications of the Department of Computer Science of RWTH Aachen University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

SAT Solving for Termination Analysis with Polynomial Interpretations^{*}

Carsten Fuhs¹, Jürgen Giesl¹, Aart Middeldorp², Peter Schneider-Kamp¹, René Thiemann¹, and Harald Zankl²

> ¹ LuFG Informatik 2, RWTH Aachen, Germany, {fuhs,giesl,psk,thiemann}@informatik.rwth-aachen.de
> ² Institute of Computer Science, University of Innsbruck, Austria, {aart.middeldorp,harald.zankl}@uibk.ac.at

Abstract. Polynomial interpretations are one of the most popular techniques for automated termination analysis and the search for such interpretations is a main bottleneck in most termination provers. We show that one can obtain speedups in orders of magnitude by encoding this task as a SAT problem and by applying modern SAT solvers.

1 Introduction

Termination is one of the most important properties of programs and therefore, there is a need for techniques and tools that analyze the termination behavior of programs automatically. In particular, there has been intensive research on methods for termination analysis of *term rewrite systems* (TRSs) [4]. Instead of developing several separate termination techniques for different programming languages, a promising approach is to transform programs from different languages into TRSs instead. Then termination tools for TRSs can be used for termination analysis of many different programming languages, cf. e.g. [13, 22].

The increasing interest in termination analysis for TRSs is also shown by the annual *International Competition of Termination Tools.*³ In 2006, for the first time some tools used SAT solvers to automate certain termination techniques, cf. [1, 5, 6, 11, 18, 25, 26]. But although *polynomial interpretations* [20] are one of the most popular techniques in these tools, up to now there has not been any paper on using SAT solvers for finding polynomial interpretations automatically.

In this paper, we show that SAT solving is extremely useful for this task. We recapitulate TRSs in Sect. 2. Sect. 3 shows how to encode the search for polynomial interpretations as a SAT problem. Sect. 4 extends our approach to *negative* polynomial interpretations [17]. Sect. 5 presents our implementation in the tool AProVE [14], which was the most powerful termination prover for TRSs in all the competitions 2004 - 2006. Our experiments show that our approach improves dramatically over previous methods for generating polynomial interpretations.

2 Termination of TRSs and Polynomial Interpretations

A TRS \mathcal{R} is a set of rules $\ell \to r$ where ℓ and r are terms. A rule $\ell \to r$ applies to a term t if ℓ matches a subterm u of t with some substitution σ (namely, $u = \sigma(\ell)$).

^{*} Supported by the DFG (Deutsche Forschungsgemeinschaft) grant GI 274/5-1 and the FWF (Austrian Science Fund) project P18763.

³ See http://www.lri.fr/~marche/termination-competition/

The rule is applied by replacing the subterm u by $\sigma(r)$, resulting in a new term v (a so-called *rewrite step*, denoted " $t \to_{\mathcal{R}} v$ "). A *reduction* is a sequence of rewrite steps. A TRS is *terminating* if all its reductions are finite. For example, consider the following TRS where s represents the successor function, half(x) computes $|\frac{x}{2}|$, and bits(x) is the number of bits needed to represent all numbers up to x.

$$\begin{array}{ccc} \mathsf{half}(0) \to 0 & (\mathrm{i}) & \mathsf{bits}(0) \to 0 & (\mathrm{iv}) \\ \mathsf{half}(\mathsf{s}(0)) \to 0 & (\mathrm{ii}) & \mathsf{bits}(\mathsf{s}(0)) \to \mathsf{s}(0) & (\mathrm{v}) \\ \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{half}(x)) & (\mathrm{iii}) & \mathsf{bits}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(x)))) & (\mathrm{vi}) \end{array}$$

So we have $\mathsf{half}(\mathsf{s}(\mathsf{s}(0))) \to_{\mathcal{R}} \mathsf{s}(\mathsf{half}(0)) \to_{\mathcal{R}} \mathsf{s}(0), \, \mathrm{i.e.}, \, \mathsf{half}(\mathsf{s}(\mathsf{s}(0))) \to_{\mathcal{R}}^* \mathsf{s}(0).$

One of the most powerful termination methods is the *dependency pair* (DP) technique [2], implemented in virtually all current termination tools for TRSs.

Definition 1 (Dependency Pairs [2]). For a TRS \mathcal{R} , the defined symbols are the root symbols of the left-hand sides of rules. For every defined symbol f, we extend the signature by a fresh tuple symbol f^{\sharp} with the same arity as f. If $t = f(t_1, \ldots, t_n)$ and f is a defined symbol, we write t^{\sharp} for $f^{\sharp}(t_1, \ldots, t_n)$. If $\ell \to r \in \mathcal{R}$ and t is a subterm of r with defined root symbol, then the rule $\ell^{\sharp} \to t^{\sharp}$ is a dependency pair of \mathcal{R} . The set of all dependency pairs of \mathcal{R} is denoted $DP(\mathcal{R})$.

In our example, half and bits are defined symbols and $DP(\mathcal{R}) = \{(vii), (viii), (ix)\}$:

$$\begin{aligned} \mathsf{half}^{\sharp}(\mathsf{s}(\mathsf{s}(x))) &\to \mathsf{half}^{\sharp}(x) \quad (\mathrm{vii}) \\ \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{s}(x))) &\to \mathsf{half}^{\sharp}(x) \quad (\mathrm{viii}) \\ \end{aligned}$$

Intuitively, a DP corresponds to a (possibly recursive) function call. To prove termination, we have to show that there cannot be infinitely many function calls in any reduction. More precisely, one has to prove that there is no infinite chain

$$\sigma_1(u_1) \to_{DP(\mathcal{R})} \sigma_1(v_1) \to_{\mathcal{R}}^* \sigma_2(u_2) \to_{DP(\mathcal{R})} \sigma_2(v_2) \to_{\mathcal{R}}^* \sigma_3(u_3) \to_{DP(\mathcal{R})} \sigma_3(v_3) \dots$$

where $u_i \to v_i \in DP(\mathcal{R})$ and σ_i are substitutions. To this end, the DP method⁴ requires $u \succ v$ for all $u \to v \in DP(\mathcal{R})$ and $\ell \succeq r$ for all rules $\ell \to r \in \mathcal{R}$:

$$\bigwedge_{u \to v \in DP(\mathcal{R})} \quad u \succ v \qquad \land \qquad \bigwedge_{\ell \to r \in \mathcal{R}} \quad \ell \succeq r \tag{1}$$

A popular method to search for relations \succ and \succeq automatically are *polyno*mial interpretations [20]. A polynomial interpretation $\mathcal{P}ol$ maps each *n*-ary function symbol f to a polynomial $f_{\mathcal{P}ol}$ over n variables $x_1, ..., x_n$ with coefficients from $\mathbb{N} = \{0, 1, 2, ...\}$. This mapping is extended to terms by defining $[x]_{\mathcal{P}ol} = x$ for all variables x and $[f(t_1, ..., t_n)]_{\mathcal{P}ol} = f_{\mathcal{P}ol}([t_1]_{\mathcal{P}ol}, ..., [t_n]_{\mathcal{P}ol})$. If the interpretation $\mathcal{P}ol$ is clear from the context, we also write [t] instead of $[t]_{\mathcal{P}ol}$.

For example, consider $\mathcal{P}ol_1$ with $\mathsf{half}_{\mathcal{P}ol_1} = \mathsf{half}_{\mathcal{P}ol_1}^{\sharp} = x_1$, $\mathsf{bits}_{\mathcal{P}ol_1} = \mathsf{bits}_{\mathcal{P}ol_1}^{\sharp} =$

⁴ For further refinements of the DP method we refer to [2, 12, 15-17], for example.

 $s_{\mathcal{P}ol_1} = x_1 + 1$, $0_{\mathcal{P}ol_1} = 0$. Then $[\mathsf{half}(\mathsf{s}(\mathsf{s}(x)))] = x + 2$ and $[\mathsf{s}(\mathsf{half}(x))] = x + 1$. Now a term u is considered to be greater (resp. greater-equal) than v iff [u] > [v](resp. $[u] \ge [v]$) holds for all instantiations of the variables with natural numbers. So with $\mathcal{P}ol_1$ we obtain $\mathsf{half}(\mathsf{s}(\mathsf{s}(x))) \succ \mathsf{s}(\mathsf{half}(x))$. In fact, all DPs (vii) - (ix) are strictly decreasing and the rules (i) - (vi) are at least weakly decreasing, i.e., the requirement (1) holds. Thus, termination of the TRS (i) - (vi) is proved.

To find such interpretations automatically, one starts with an *abstract* polynomial interpretation. It maps each n-ary symbol f to a polynomial of the form

$$a_0 + a_1 x_1^{e_{11}} \dots x_n^{e_{n1}} + \dots + a_m x_1^{e_{1m}} \dots x_n^{e_{nm}}$$
 (2)

Here, the e_{ij} are actual numbers (i.e., one has to determine the degree and the shape of the polynomials), but the coefficients a_i are left open (i.e., they are *variable* or *abstract* coefficients). For example, we could use the abstract polynomial interpretation $\mathcal{P}ol_2$ with $\mathsf{half}_{\mathcal{P}ol_2} = a x_1 + b$, $\mathsf{s}_{\mathcal{P}ol_2} = c x_1 + d$, etc.

Every inequality $u \succ v$ (resp. $u \succeq v$) can be transformed into the constraint [u] - [v] > 0 (resp. $[u] - [v] \ge 0$). Here, [u] - [v] is a polynomial of the form

$$p_0 + p_1 x_1^{e_{11}} \dots x_n^{e_{n1}} + \dots + p_k x_1^{e_{1k}} \dots x_n^{e_{nk}}$$
(3)

where p_i are polynomials over abstract coefficients. So with $\mathcal{P}ol_2$, half(s(s(x))) > s(half(x)) is transformed to $a c^2 x + a c d + a d + b - c a x - c b - d > 0$, i.e. to

$$p_0 + p_1 x > 0$$
 where $p_0 = a c d + a d + b - c b - d$ and $p_1 = a c^2 - c a$ (x)

If p is a polynomial like (3), then instead of inequalities or equalities of the form p > 0, $p \ge 0$, p = 0, it suffices⁵ to require the following constraints [19]:

$$\alpha_{p>0} = (p_0 > 0 \land p_1 \ge 0 \land \dots \land p_k \ge 0) \tag{4}$$

$$\alpha_{p\geq 0} = (p_0 \ge 0 \land p_1 \ge 0 \land \dots \land p_k \ge 0)$$
(5)

$$\alpha_{p=0} = (p_0 = 0 \land p_1 = 0 \land \dots \land p_k = 0)$$
 (6)

So instead of (x), it is sufficient to demand $p_0 > 0$ and $p_1 \ge 0$:

$$a c d + a d + b - c b - d > 0 \qquad \land \qquad a c^2 - c a \ge 0$$
 (xi)

Such constraints can be transformed further such that they do not contain subtractions and " \geq " anymore. For example, (xi) can be transformed into

$$a c d + a d + b > c b + d \land (a c^2 > c a \lor a c^2 = c a)$$
(xii)

Now to prove termination one has to show the *satisfiability* of such *Diophantine constraints* over the naturals. Def. 2 introduces their syntax and semantics.

Definition 2 (Diophantine Constraints). Let \mathcal{A} be a set of Diophantine variables. The set of polynomials \mathcal{P} is the smallest set with

- $\mathcal{A} \subseteq \mathcal{P}$ and $\mathbb{N} \subseteq \mathcal{P}$
- If $\{p, q\} \subseteq \mathcal{P}$ then $\{p+q, p*q\} \subseteq \mathcal{P}$

The set of Diophantine constraints $\mathcal C$ is the smallest set with

⁵ Of course, $\alpha_{p>0}$ and $\alpha_{p\geq0}$ are sufficient, but not necessary for p>0 and $p\geq0$.

- $\{true, false\} \subseteq C$
- If $\{p, q\} \subseteq \mathcal{P}$ then $\{p > q, p = q\} \subseteq \mathcal{C}$
- If $\{\alpha, \beta\} \subseteq \mathcal{C}$ then $\{\neg \alpha, \alpha \land \beta, \alpha \lor \beta, \alpha \to \beta, \alpha \leftrightarrow \beta, \alpha \oplus \beta\} \subseteq \mathcal{C}$

A Diophantine interpretation \mathcal{D} is a mapping $\mathcal{D} : \mathcal{A} \to \mathbb{N}$. It can be extended to polynomials by defining $\mathcal{D}(n) = n$ for all $n \in \mathbb{N}$, $\mathcal{D}(p+q) = \mathcal{D}(p) + \mathcal{D}(q)$, and $\mathcal{D}(p * q) = \mathcal{D}(p) * \mathcal{D}(q)$. It can also be extended to Diophantine constraints as follows (i.e., we then have $\mathcal{D} : \mathcal{C} \to \{0,1\}$, where 0 stands for "false" and 1 stands for "true"). As usual, \mathcal{D} is called a model of a constraint α iff $\mathcal{D}(\alpha) = 1$.

- $\mathcal{D}(true) = 1, \ \mathcal{D}(false) = 0$
- $\mathcal{D}(p > q) = 1$ if $\mathcal{D}(p) > \mathcal{D}(q)$ and $\mathcal{D}(p > q) = 0$, otherwise
- $\mathcal{D}(p=q) = 1$ if $\mathcal{D}(p) = \mathcal{D}(q)$ and $\mathcal{D}(p=q) = 0$, otherwise
- $\mathcal{D}(\neg \alpha) = 1$ if $\mathcal{D}(\alpha) = 0$ and $\mathcal{D}(\neg \alpha) = 0$, otherwise, and similarly for the other Boolean connectives, where \oplus is exclusive-or

For example, let $a \in \mathcal{A}$ and let \mathcal{D} with $\mathcal{D}(a) = 2$. Then $\mathcal{D}(2 * a) = \mathcal{D}(2) * \mathcal{D}(a) = 2 * 2 = 4$ and $\mathcal{D}(1 + a) = 3$. Thus, $\mathcal{D}(2 * a > 1 + a) = 1$, since 4 > 3.

Similarly, the constraint (xii) is satisfied by the interpretation $\mathcal{D}(a) = 1$, $\mathcal{D}(b) = 0$, $\mathcal{D}(c) = 1$, and $\mathcal{D}(d) = 1$. This Diophantine interpretation instantiates the abstract polynomial interpretation $\mathcal{P}ol_2$ with half $_{\mathcal{P}ol_2} = a x_1 + b$ and $s_{\mathcal{P}ol_2} = c x_1 + d$ to the concrete polynomial interpretation $\mathcal{P}ol_1$ with half $_{\mathcal{P}ol_1} = x_1$ and $s_{\mathcal{P}ol_1} = x_1 + 1$ (i.e., we also write⁶ $\mathcal{D}(\mathcal{P}ol_2) = \mathcal{P}ol_1$).

To summarize, to prove termination we proceed as follows:

- 1. Transform the termination problem into inequalities $u \succ v$ or $u \succeq v$ between terms. If one uses the DP method, then one obtains a requirement like (1).
- 2. Fix an abstract polynomial interpretation and transform the inequalities into [u] [v] > 0 or $[u] [v] \ge 0$, respectively.
- 3. Replace [u] [v] > 0 and $[u] [v] \ge 0$ by $\alpha_{[u]-[v]>0}$ and $\alpha_{[u]-[v]\ge0}$, cf. (4), (5).
- 4. Transform the obtained constraint into a Diophantine constraint containing only > and = and no subtractions.
- 5. Check the satisfiability of the resulting Diophantine constraint. In the next section, we will show how to perform this check using SAT solvers.

3 Encoding Diophantine Constraints to SAT

We have shown that to prove termination, it suffices to prove the satisfiability of a Diophantine constraint. Now we reduce this problem to a SAT problem. We first give the syntax and semantics of propositional logic. Here, we also regard *tuples* of formulas which are interpreted as binary representations of numbers.

Definition 3 (Propositional Logic). Let \mathcal{V} be a set of propositional variables. Then the set of propositional formulas \mathcal{F} is the smallest set with

- $\mathcal{V} \subseteq \mathcal{F}$ and $\{0, 1\} \subseteq \mathcal{F}$
- If $\{\varphi, \psi\} \subseteq \mathcal{F}$ then $\{\neg \varphi, \varphi \land \psi, \varphi \lor \psi, \varphi \to \psi, \varphi \leftrightarrow \psi, \varphi \oplus \psi\} \subseteq \mathcal{F}$

⁶ \mathcal{D} only instantiates abstract coefficients like a, b, c, d. For variables x_i we define $\mathcal{D}(x_i) = x_i$. Thus $\mathcal{D}(a x_1 + b) = 1 * x_1 + 0 = x_1$.

A propositional interpretation $\mathfrak{I} : \mathcal{V} \to \{0,1\}$ can be extended to formulas as follows (i.e., we then have $\mathfrak{I} : \mathcal{F} \to \{0,1\}$). \mathfrak{I} is called a model of φ iff $\mathfrak{I}(\varphi) = 1$.

- $\Im(0) = 0, \ \Im(1) = 1$
- $\Im(\neg \varphi) = 1$ if $\Im(\varphi) = 0$ and $\Im(\neg \varphi) = 0$, otherwise (similarly for $\land, \lor, \rightarrow, \leftrightarrow, \oplus$)

Finally, a propositional interpretation can also be extended to tuples of n propositional formulas (with $n \ge 1$) by defining $\mathfrak{I} : \mathcal{F}^n \to \mathbb{N}$ where

$$\mathfrak{I}(\langle \varphi_1, \dots, \varphi_n \rangle) = 2^{n-1} * \mathfrak{I}(\varphi_1) + 2^{n-2} * \mathfrak{I}(\varphi_2) + \dots + 2 * \mathfrak{I}(\varphi_{n-1}) + \mathfrak{I}(\varphi_n)$$

As an example, let $a_1, a_2 \in \mathcal{V}$ with $\mathfrak{I}(a_1) = 1$ and $\mathfrak{I}(a_2) = 0$. Then we have $\mathfrak{I}(\langle a_1, \neg a_2 \land 1, a_2 \rangle) = 4 * \mathfrak{I}(a_1) + 2 * \mathfrak{I}(\neg a_2 \land 1) + \mathfrak{I}(a_2) = 4 * 1 + 2 * 1 + 0 = 6$.

Note that one can always delete zeros at the beginning of a tuple since $\Im(\langle 0, \ldots, 0, \varphi_1, \ldots, \varphi_n \rangle) = \Im(\langle \varphi_1, \ldots, \varphi_n \rangle)$ for any interpretation \Im . Moreover, we identify one-element-tuples with the element itself since $\Im(\langle \varphi \rangle) = \Im(\varphi)$.

Satisfiability of Diophantine constraints is undecidable (it corresponds to Hilbert's 10th problem). Therefore, we restrict the search to Diophantine interpretations of the form $\mathcal{D} : \mathcal{A} \to \{0, \ldots, 2^k - 1\}$ for a fixed $k \geq 1$. Then variables are only instantiated by numbers that can be represented by k bits. Satisfiability of Diophantine constraints by such restricted interpretations is NP-complete.

We now introduce a mapping $||.|| : \mathcal{C} \to \mathcal{F}$ from Diophantine constraints to propositional formulas such that a constraint α is satisfiable by an interpretation $\mathcal{D} : \mathcal{A} \to \{0, \ldots, 2^k - 1\}$ iff the propositional formula $||\alpha||$ is satisfiable.

We first define ||.|| on Diophantine variables. Every Diophantine variable is mapped to a tuple of k propositional variables, i.e., we have $||.|| : \mathcal{A} \to \mathcal{V}^k$:

 $||a|| = \langle a_1, \dots, a_k \rangle$ for every Diophantine variable $a \in \mathcal{A}$ (7)

The idea is that $\langle a_1, \ldots, a_k \rangle$ should be the binary representation of a. For any propositional interpretation \mathfrak{I} we define the *corresponding* interpretation $\mathcal{D}_{\mathfrak{I}}$.

Definition 4 (Corresponding Interpretations). Let \mathcal{V} contain a_1, \ldots, a_k for any Diophantine variable $a \in \mathcal{A}$. For any propositional interpretation \mathfrak{I} , we define the corresponding Diophantine interpretation as $\mathcal{D}_{\mathfrak{I}}(a) = \mathfrak{I}(\langle a_1, \ldots, a_k \rangle)$.

So if k = 2, then $||a|| = \langle a_1, a_2 \rangle$. The propositional interpretation $\Im(a_1) = 1$ and $\Im(a_2) = 0$ corresponds to the interpretation with $\mathcal{D}_{\Im}(a) = \Im(\langle a_1, a_2 \rangle) = 2$.

Now we define ||.|| for natural numbers. Again, ||.|| maps numbers to their binary representation, i.e., we have $||.|| : \mathbb{N} \to \{0,1\}^+$:

$$||n|| = \langle b^1, \dots, b^\ell \rangle \text{ for every } n \in \mathbb{N}$$
(8)

where all $b^i \in \{0, 1\}$ and $n = 2^{\ell-1} * b^1 + 2^{\ell-2} * b^2 + \ldots + 2 * b^{\ell-1} + b^{\ell}$. To avoid unnecessary long encodings with zeros at the beginning, we require $b^1 = 1$ for all n > 0 (i.e., we require that as few bits as possible are used for representing n > 0). So for example, we have $||2|| = \langle 1, 0 \rangle$. For the representation of the number 0 we define $||0|| = \langle 0 \rangle$. Note that $\mathcal{D}_{\mathfrak{I}}(n) = n = \mathfrak{I}(||n||)$ for all $n \in \mathbb{N}$.

Next we define ||.|| for polynomials. As before, every polynomial is mapped to a tuple of propositional formulas, i.e., $||.|| : \mathcal{P} \to \mathcal{F}^+$. The goal is to obtain the following correspondence for all polynomials p and all interpretations \mathfrak{I} :

$$\mathcal{D}_{\mathfrak{I}}(p) = \mathfrak{I}(||p||) \tag{9}$$

To handle addition and multiplication, we introduce operations $B^+: \mathcal{F}^+ \times \mathcal{F}^+ \to$ \mathcal{F}^+ and $B^*: \mathcal{F}^+ \times \mathcal{F}^+ \to \mathcal{F}^+$ on tuples of propositional formulas. We then define

> $||p+q|| = B^+(||p||, ||q||)$ and $||p*q|| = B^*(||p||, ||q||)$ (10)

for all polynomials p and q. We first give the definition of B^+ .

• $B^+(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_m \rangle) = B^+(\langle \varphi_1, ..., \varphi_n \rangle, \langle \underbrace{0, ..., 0}_{n-m \text{ times}}, \psi_1, ..., \psi_m \rangle) \text{ if } n > m$

•
$$B^+(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_m \rangle) = B^+(\langle \underbrace{0, ..., 0}_{m-n \text{ times}}, \varphi_1, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_m \rangle) \text{ if } n < m$$

- $B^+(\langle \varphi \rangle, \langle \psi \rangle) = \langle \varphi \land \psi, \varphi \oplus \psi \rangle$ $B^+(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_n \rangle) = \langle B^{2or3}(\varphi_1, \psi_1, \xi_1), B^{1or3}(\varphi_1, \psi_1, \xi_1), \xi_2, ..., \xi_n \rangle$ if $B^+(\langle \varphi_2, ..., \varphi_n \rangle, \langle \psi_2, ..., \psi_n \rangle) = \langle \xi_1, ..., \xi_n \rangle$

Thus, ξ_1 is the carry resulting from adding $\langle \varphi_2, ..., \varphi_n \rangle$ and $\langle \psi_2, ..., \psi_n \rangle$. Here " $B^{1or3}(\varphi_1,\psi_1,\xi_1)$ " abbreviates $\varphi_1 \oplus \psi_1 \oplus \xi_1$ (i.e., either one or all three of the formulas φ_1, ψ_1 , and ξ_1 must be true). Similarly, " $B^{2or3}(\varphi_1, \psi_1, \xi_1)$ " abbreviates $(\varphi_1 \wedge \psi_1) \vee (\varphi_1 \wedge \xi_1) \vee (\psi_1 \wedge \xi_1)$. For example, we have⁷

$$B^+(\langle 1 \rangle, \langle a_2 \rangle) = \langle 1 \wedge a_2, 1 \oplus a_2 \rangle = \langle a_2, \neg a_2 \rangle$$

$$B^+(\langle 0, 1 \rangle, \langle a_1, a_2 \rangle) = \langle B^{2or3}(0, a_1, a_2), B^{1or3}(0, a_1, a_2), \neg a_2 \rangle = \langle a_1 \wedge a_2, a_1 \oplus a_2, \neg a_2 \rangle$$

Therefore, we obtain $||1 + a|| = B^+(||1||, ||a||) = B^+(\langle 1 \rangle, \langle a_1, a_2 \rangle) = \langle a_1 \land a_2, a_1 \oplus A_2 \rangle$ $a_2, \neg a_2$. Indeed, if $\mathfrak{I}(a_1) = 1$ and $\mathfrak{I}(a_2) = 0$ (i.e., $\mathcal{D}_{\mathfrak{I}}(a) = 2$), then $\mathcal{D}_{\mathfrak{I}}(1+a) = 3$ and $\mathfrak{I}(||1+a||) = \mathfrak{I}(\langle a_1 \wedge a_2, a_1 \oplus a_2, \neg a_2 \rangle) = 3$. Hence, $\mathcal{D}_{\mathfrak{I}}(1+a) = \mathfrak{I}(||1+a||)$, as desired in (9). Next we give the definition of $B^*: \mathcal{F}^+ \times \mathcal{F}^+ \to \mathcal{F}^+$.

•
$$B^*(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi \rangle) = \langle \varphi_1 \wedge \psi, ..., \varphi_n \wedge \psi \rangle$$

• $B^*(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_m \rangle) = B^+(\langle \varphi_1 \wedge \psi_1, ..., \varphi_n \wedge \psi_1, \underbrace{0, ..., 0}_{m-1 \text{ times}} \rangle,$
 $B^*(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_2, ..., \psi_m \rangle)), \text{ if } m \ge 2$

E.g.,
$$||2 * a|| = B^*(||2||, ||a||) = B^*(\langle 1, 0 \rangle, \langle a_1, a_2 \rangle)$$

= $B^+(\langle 1 \land a_1, 0 \land a_1, 0 \rangle, B^*(\langle 1, 0 \rangle, \langle a_2 \rangle)) = B^+(\langle a_1, 0, 0 \rangle, \langle a_2, 0 \rangle)$
= $B^+(\langle a_1, 0, 0 \rangle, \langle 0, a_2, 0 \rangle) = \langle 0, a_1, a_2, 0 \rangle = \langle a_1, a_2, 0 \rangle.$

Indeed, if $\mathfrak{I}(a_1) = 1$ and $\mathfrak{I}(a_2) = 0$ (i.e., $\mathcal{D}_{\mathfrak{I}}(a) = 2$), then $\mathcal{D}_{\mathfrak{I}}(2 * a) = 4 =$ $\mathfrak{I}(\langle a_1, a_2, 0 \rangle) = \mathfrak{I}(||2 * a||)$, as desired in (9). We state (9) as a general lemma.

Lemma 5 (Correctness of Encoding Polynomials). For every polynomial $p \in \mathcal{P}$ and every propositional interpretation \mathfrak{I} , we have $\mathcal{D}_{\mathfrak{I}}(p) = \mathfrak{I}(||p||).^{8}$

Now we extend the mapping ||.|| to $||.|| : \mathcal{C} \to \mathcal{F}$. Thus, every Diophantine constraint is mapped to a formula (not to a tuple). Obviously, we define

$$||true|| = 1 \quad \text{and} \quad ||false|| = 0 \tag{11}$$

For Diophantine constraints that are polynomial inequalities or equalities, we introduce operations $B^{>}: \mathcal{F}^{+} \times \mathcal{F}^{+} \to \mathcal{F}$ and $B^{=}: \mathcal{F}^{+} \times \mathcal{F}^{+} \to \mathcal{F}$ and define

$$||p > q|| = B^{>}(||p||, ||q||) \text{ and } ||p = q|| = B^{=}(||p||, ||q||)$$
 (12)

for all polynomials p and q. To define $B^>$ and $B^=$, we first handle the case where the argument tuples have different lengths. For $\circ \in \{=, >\}$ we define

⁷ For readability, we perform Boolean simplifications like replacing $1 \wedge a_2$ by a_2 , etc.

⁸ All proofs can be found in the appendix.

- $B^{\circ}(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_m \rangle) = B^{\circ}(\langle \varphi_1, ..., \varphi_n \rangle, \langle \underbrace{0, ..., 0}_{n-m \text{ times}}, \psi_1, ..., \psi_m \rangle) \text{ if } n > m$ $B^{\circ}(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_m \rangle) = B^{\circ}(\langle \underbrace{0, ..., 0}_{q, 1}, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_m \rangle) \text{ if } n < m$

Now we define $B^{>}$ and $B^{=}$ for tuples of equal length.

• $B^{=}(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_n \rangle) = (\varphi_1 \leftrightarrow \psi_1) \land \ldots \land (\varphi_n \leftrightarrow \psi_n)$ • $B^{>}(\langle \varphi \rangle, \langle \psi \rangle) = \varphi \land \neg \psi$ • $B^{>}(\langle \varphi \rangle, \langle \psi \rangle) = (\varphi_1 \land \neg \psi_1) \lor ((\varphi_1 \land \neg \psi_1) \land B^{>}(\langle \varphi_2, ..., \varphi_n \rangle, \langle \psi_2, ..., \psi_n \rangle)),$ if $n \geq 2$

For example, $||2 * a > 1 + a|| = B^{>}(||2 * a||, ||1 + a||)$ $=B^{>}(\langle a_1,a_2,0\rangle,\langle a_1\wedge a_2,a_1\oplus a_2,\neg a_2\rangle)$ $= (a_1 \land \neg a_2) \lor ((a_1 \leftrightarrow a_2) \land ((a_2 \land \neg (a_1 \oplus a_2)) \lor \ldots))$ $= a_1$

So ||2 * a > 1 + a|| only holds for the propositional interpretations where $\Im(a_1) =$ 1. Indeed, the corresponding Diophantine interpretations with $\mathcal{D}_{\mathfrak{I}}(a) = 2$ or $\mathcal{D}_{\mathfrak{I}}(a) = 3$ are the only ones satisfying the constraint 2 * a > 1 + a (if we are restricted to $\mathcal{D}(a) \in \{0, \ldots, 3\}$). Finally, we define ||.|| on non-atomic constraints:

$$||\neg \alpha|| = \neg ||\alpha|| \quad \text{and} \quad ||\alpha \circ \beta|| = ||\alpha|| \circ ||\beta|| \text{ for all } \circ \in \{\land, \lor, \rightarrow, \leftrightarrow, \oplus\}$$
(13)

By Thm. 6, our encoding defined in (7), (8), (10), (11), (12), (13) is correct.

Theorem 6 (Correctness of Encoding Diophantine Constraints). For every $\alpha \in \mathcal{C}$ and every propositional interpretation \mathfrak{I} , we have $\mathcal{D}_{\mathfrak{I}}(\alpha) = \mathfrak{I}(||\alpha||)$.

So to determine the satisfiability of a Diophantine constraint α by a Diophantine interpretation with numbers from $\{0, \ldots, 2^k - 1\}$, we now encode α as a propositional formula $||\alpha||$ and then use a SAT solver to find a model \Im of $||\alpha||$. Thm. 7 shows that the size of our encoding is polynomial.

Theorem 7 (Size of Encoding). Let $\alpha \in C$ such that every number in α is $\leq 2^k - 1$. Then the size of $||\alpha||$ is in $\mathcal{O}(|\alpha|^2 * k^2)$, where $|\alpha|$ is the size of α .

$\mathbf{4}$ **Polynomials with Negative Constant**

Now we regard polynomials $f_{\mathcal{P}ol}$ which may have a negative constant coefficient (i.e., in (2) one may have $a_0 < 0$). All other coefficients still have to be natural numbers. As demonstrated by the tools TTT [17] and AProVE [14] in the termination competitions, such polynomials (in connection with the DP method) are very helpful in practice. We show how to extend our approach in order to use SAT solvers also for such polynomial interpretations.

As in [3, Ex. 4.28], we replace the rules (v) and (vi) of our TRS by

$$bits(s(x)) \rightarrow s(bits(half(s(x)))).$$

Instead of (viii) and (ix) we get the DPs $bits^{\sharp}(s(x)) \rightarrow half^{\sharp}(s(x))$ and $bits^{\sharp}(s(x)) \rightarrow bits^{\sharp}(half(s(x)))$. Now there is no polynomial interpretation with non-negative coefficients where the DPs are strictly and the rules are weakly decreasing.

Thus, we use a polynomial interpretation $\mathcal{P}ol_3$ with $\mathsf{half}_{\mathcal{P}ol_3} = x_1 - 1$. However, if one extends such interpretations to terms naively, then terms could be mapped to negative numbers and thus, the resulting order would not be well founded. Hence, [17] proposed the following modification in the definition of [.]: [x] = x for all variables x and $[f(t_1, \ldots, t_n)] = \max(f_{\mathcal{P}ol}([t_1], \ldots, [t_n]), 0)$. So if $s_{\mathcal{P}ol_3} = x_1 + 1$, then $[\mathsf{s}(\mathsf{half}(x))]_{\mathcal{P}ol_3} = \max(\max(x - 1, 0) + 1, 0)$. Now one can again replace inequalities $u \succ v$ (resp. $u \succeq v$) by [u] > [v] (resp. $[u] \ge [v]$).

We are interested in *abstract* polynomial interpretations with variable coefficients. To find suitable values for the coefficients, up to now inequalities like [u] > [v] were transformed into Diophantine constraints by building $\alpha_{[u]-[v]>0}$ etc., cf. (4) and (5). Here, we simply required all coefficients of the polynomial [u] - [v] to be non-negative resp. positive. However, now [u] - [v] contains "max" (i.e., it is no longer a polynomial). Thus, it is unclear how to transform [u] > [v] into a satisfiability problem of a Diophantine constraint.

To solve this problem, let us first regard *concrete* polynomial interpretations (where the coefficients are actual numbers). Here, the occurrences of "max" in inequalities [u] > [v] could be eliminated by case analyses. But to increase efficiency, [17] presented an alternative approach to transform inequalities like [u] > [v] into ordinary polynomial inequalities without "max". The idea is to define an under-approximation $[.]^{left}$ and an over-approximation $[.]^{right}$ which do not contain "max" anymore. Then instead of [u] > [v] one requires $[u]^{left} > [v]^{right}$.

Definition 8 ([.]^{left} and [.]^{right} for Concrete Interpretations [17]). For every polynomial p we denote its constant part by con(p) and the non-constant part p - con(p) by ncon(p). For any concrete polynomial interpretation $\mathcal{P}ol$ and any term t, we define the polynomials $[t]_{\mathcal{P}ol}^{left}$ and $[t]_{\mathcal{P}ol}^{right}$ as follows:⁹

$$\begin{split} [t]^{left} &= \begin{cases} t & if \ t \ is \ a \ variable \\ 0 & if \ t = f(t_1, \dots, t_n), \ ncon(p_1) = 0, \ and \ 0 > con(p_1) \\ p_1 & if \ t = f(t_1, \dots, t_n), \ otherwise \\ \end{cases} \\ [t]^{right} &= \begin{cases} t & if \ t \ is \ a \ variable \\ ncon(p_2) & if \ t = f(t_1, \dots, t_n) \ and \ 0 > con(p_2) \\ p_2 & if \ t = f(t_1, \dots, t_n), \ otherwise \end{cases} \end{split}$$

where $p_1 = f_{\mathcal{P}ol}([t_1]^{left}, \dots, [t_n]^{left})$ and $p_2 = f_{\mathcal{P}ol}([t_1]^{right}, \dots, [t_n]^{right}).$

As shown in [17], we have $[t]^{left} \leq [t] \leq [t]^{right}$ for all terms t. Moreover, if the polynomial interpretation has no negative constants, then we have $[t]^{left} = [t] = [t]^{right}$. For the polynomial interpretation with half $\mathcal{P}_{ol_3} = x_1 - 1$, we obtain

$$[\mathsf{half}(x)]_{\mathcal{P}ol_3}^{left} = x - 1$$
 $[\mathsf{half}(x)]_{\mathcal{P}ol_3} = \max(x - 1, 0)$ $[\mathsf{half}(x)]_{\mathcal{P}ol_3}^{right} = x$ (xiii)

The reason is that for both $i \in \{1, 2\}$, we have $p_i = \mathsf{half}_{\mathcal{P}ol_3}(x) = x - 1$ and thus $ncon(p_i) = x$ and $con(p_i) = -1$. If $\mathcal{P}ol_3$ is defined like our previous interpretation $\mathcal{P}ol_1$ on all remaining function symbols except half, then we obtain $[u]^{left} >$

⁹ If $\mathcal{P}ol$ is clear from the context we again omit the subscript " $\mathcal{P}ol$ ".

 $[v]^{right}$ for all DPs $u \to v$ and $[\ell]^{left} \ge [r]^{right}$ for all rules $\ell \to r$. Thus, the termination of our modified example can now easily be shown.

The disadvantage of Def. 8 is that one can only compute $[t]^{left}$ and $[t]^{right}$ for concrete polynomial interpretations.¹⁰ However, if one wants to find the coefficients of the polynomial interpretations automatically, then it would be better to start with *abstract* polynomial interpretations again where the coefficients a_i in (2) are left open (i.e., they are variable coefficients).

For example, we would use an abstract interpretation $\mathcal{P}ol_2$ with $\mathsf{half}_{\mathcal{P}ol_2} = a x_1 + b$. Here, *a* may only be instantiated by natural numbers, whereas we denote Diophantine variables like *b* that may be instantiated by integers in **bold** face. However, to compute $[\mathsf{half}(x)]_{\mathcal{P}ol_2}^{left}$ and $[\mathsf{half}(x)]_{\mathcal{P}ol_2}^{right}$ we would have to decide whether $ncon(p_i) = a x$ and $con(p_i) = b$ are equal to resp. less than 0. This of course depends on the instantiation of the variable coefficients *a* and *b*.

Therefore, we now modify Def. 8 to make it suitable for abstract polynomial interpretations. The idea is to introduce new variables $\boldsymbol{b}_{t}^{left}$ and $\boldsymbol{b}_{t}^{right}$ for any term t and to create Diophantine constraints α_{t}^{left} and α_{t}^{right} which guarantee that $\boldsymbol{b}_{t}^{left}$ and $\boldsymbol{b}_{t}^{right}$ are instantiated correctly. To this end, we express the conditions $ncon(p_1) = 0$ and $0 > con(p_i)$ from Def. 8 as Diophantine constraints.

Definition 9 ([.]^{left} and [.]^{right} for Abstract Interpretations). For any abstract polynomial interpretation $\mathcal{P}ol$ and any term t, we define:

• If t is a variable, then
$$[t]^{left} = t$$
, $[t]^{right} = t$, $\alpha_t^{left} = true$, and $\alpha_t^{right} = true$.
• If $t = f(t_1, \ldots, t_n)$, then¹¹ $[t]^{left} = ncon(p_1) + \mathbf{b}_t^{left}$, $[t]^{right} = ncon(p_2) + b_t^{right}$,

$$\alpha_t^{left} = \alpha_{t_1}^{left} \wedge \dots \wedge \alpha_{t_n}^{left} \wedge (\alpha_{ncon(p_1)=0} \wedge 0 > con(p_1) \rightarrow \boldsymbol{b}_t^{left} = 0) \\ \wedge (\neg(\alpha_{ncon(p_1)=0} \wedge 0 > con(p_1)) \rightarrow \boldsymbol{b}_t^{left} = con(p_1))$$

$$\alpha_t^{right} = \alpha_{t_1}^{right} \wedge \dots \wedge \alpha_{t_n}^{right} \wedge (0 > con(p_2) \rightarrow b_t^{right} = 0) \\ \wedge (\neg (0 > con(p_2)) \rightarrow b_t^{right} = con(p_2))$$

Here, p_1 and p_2 are defined as in Def. 8 and $\alpha_{ncon(p_i)=0}$ is defined as in (6).

For $\mathsf{half}_{\mathcal{P}ol_2} = a x_1 + b$ and $t = \mathsf{half}(x)$, we have $ncon(p_i) = a x$, $con(p_i) = b$,

$$[\mathsf{half}(x)]_{\mathcal{P}ol_2}^{left} = a \, x + b_t^{left} \qquad \text{and} \qquad [\mathsf{half}(x)]_{\mathcal{P}ol_2}^{right} = a \, x + b_t^{right} \qquad (\text{xiv})$$

$$\alpha_t^{left} = ((a = 0 \land 0 > \mathbf{b}) \to \mathbf{b}_t^{left} = 0) \land (\neg (a = 0 \land 0 > \mathbf{b}) \to \mathbf{b}_t^{left} = \mathbf{b})$$
(xv)

$$\alpha_t^{right} = ((0 > \boldsymbol{b}) \to b_t^{right} = 0) \land (\neg (0 > \boldsymbol{b}) \to b_t^{right} = \boldsymbol{b})$$
(xvi)

Thm. 10 shows that Def. 9 extends Def. 8 to abstract interpretations correctly.

Theorem 10 (Correspondence of Def. 8 and 9). Let \mathcal{D} be a Diophantine interpretation (which may also map **bold** variables to integers). Let $\mathcal{P}ol$ be an abstract polynomial interpretation, and let t be a term. Then $\mathcal{D}(\alpha_t^{left}) = 1$ implies $\mathcal{D}([t]_{\mathcal{P}ol}^{left}) = [t]_{\mathcal{D}(\mathcal{P}ol)}^{left}$ and $\mathcal{D}(\alpha_t^{right}) = 1$ implies $\mathcal{D}([t]_{\mathcal{P}ol}^{right}) = [t]_{\mathcal{D}(\mathcal{P}ol)}^{right}$.

¹⁰ Thus, current implementations for negative polynomials like TTT and AProVE simply test several choices for the coefficients. More sophisticated algorithms for systematically finding coefficients like [8] only work for non-negative coefficients.

¹¹ Note that according to Def. 8, $[t]^{left} = ncon(p_1)$ if $ncon(p_1) = 0$ and $0 > con(p_1)$.

For example, let \mathcal{D} be an interpretation which turns the abstract polynomial interpretation $\mathcal{P}ol_2$ into the concrete interpretation $\mathcal{P}ol_3$. Thus, we have $\mathcal{D}(a) = 1$ and $\mathcal{D}(\mathbf{b}) = -1$ and indeed, $\mathcal{D}(\mathsf{half}_{\mathcal{P}ol_2}) = \mathcal{D}(a\,x_1 + \mathbf{b}) = x_1 - 1 = \mathsf{half}_{\mathcal{P}ol_3}$. To satisfy the Diophantine constraints α_t^{left} and α_t^{right} in (xv) and (xvi), we must have $\mathcal{D}(\mathbf{b}_t^{left}) = -1$ and $\mathcal{D}(\mathbf{b}_t^{right}) = 0$. Then by (xiii) and (xiv) we indeed obtain

$$\begin{split} \mathcal{D}([\mathsf{half}(x)]^{left}_{\mathcal{P}ol_2}) &= \mathcal{D}(ax + \boldsymbol{b_t^{left}}) = x - 1 = [\mathsf{half}(x)]^{left}_{\mathcal{P}ol_3} \\ \mathcal{D}([\mathsf{half}(x)]^{right}_{\mathcal{P}ol_2}) &= \mathcal{D}(ax + \boldsymbol{b_t^{right}}) = x \qquad = [\mathsf{half}(x)]^{right}_{\mathcal{P}ol_3} \end{split}$$

So we generate Diophantine constraints containing **bold** variables like \boldsymbol{b} and \boldsymbol{b}_t^{left} which may be instantiated by *integers*. However, our encoding to propositional formulas in Sect. 3 only handles instantiations with *natural* numbers. Therefore, we now show how to remove **bold** variables from constraints α .

In the encoding $||\alpha||$, we restricted ourselves to interpretations \mathcal{D} where for all (non-**bold**) variables a we have $\mathcal{D}(a) \in \{0, \ldots, 2^k - 1\}$ for some fixed $k \ge 1$. Now one has to fix an additional number $n \ge 0$ and for all **bold** variables a, we restrict ourselves to $\mathcal{D}(a) \in \{-n, \ldots, 2^k - 1 - n\}$. Hence, to encode a Diophantine constraint α with **bold** variables, we first replace every **bold** variable a in α by "a - n" for a fresh (non-**bold**) variable a. Then (after removing subtractions), one can again use our encoding ||.|| from Sect. 3.

To summarize, the procedure from the end of Sect. 2 to transform a termination problem into a satisfiability problem is now modified as follows:

- 1. Transform the termination problem to inequalities $u \succ v$ or $u \succeq v$, cf. (1).
- 2. Fix an abstract polynomial interpretation and transform the inequalities into $[u]^{left} [v]^{right} > 0$ or $[u]^{left} [v]^{right} \ge 0$, respectively. Add the conjunction of all corresponding constraints α_u^{left} and α_v^{right} .
- 3. Replace $[u]^{left} [v]^{right} \geq_0 0$ by $\alpha_{[u]^{left} [v]^{right}} \geq_0 0$.
- 4. Fix a number $n \ge 0$ and replace all Diophantine variables a that may be instantiated by integers by "a n" for a fresh variable a.
- 5. Remove " \geq " and subtractions from the obtained constraint and check its satisfiability using SAT solving as in Sect. 3.

5 Implementation, Experiments, and Conclusion

We implemented our new SAT-based approach for polynomial interpretations in the termination prover AProVE [14]. We used the MiniSAT solver [9] and to convert formulas to CNF, we applied SAT4J's [21] implementation of Tseitin's algorithm [24]. For efficiency, our implementation uses several optimizations:

(a) Simplification: In addition to standard simplifications for Diophantine constraints and for propositional formulas, we developed a new graph-based approach to detect possible simplifications of Diophantine constraints quickly. We build a graph whose nodes consist of all occurring Diophantine variables and of all possible values they can take (e.g., $\{0, ..., 2^k - 1\}$). An edge from a node n_1 to n_2 denotes that $\mathcal{D}(n_1) \geq \mathcal{D}(n_2)$ for any Diophantine model \mathcal{D} of the given Diophantine constraint. This graph is constructed and maintained while performing the other simplifications. Whenever there is a non-trivial strongly connected component (SCC) in the graph, we can deduce that all its nodes must take the same value under any Diophantine model. If there is more than one number in the SCC, then the Diophantine constraint is not satisfiable. If there is one number in the SCC, we instantiate all Diophantine variables in the SCC by that number. If the SCC only consists of Diophantine variables, we choose an arbitrary one and replace all other variables in the SCC by the chosen one.

(b) Sharing: We use sharing for common subexpressions, both on the level of Diophantine constraints and on the level of propositional formulas.

(c) Tracking maximum values: By taking into account that Diophantine variables are only instantiated by values from a certain set (e.g., $\{0, ..., 2^k - 1\}$), one can keep track of the maximum possible values for all polynomials occurring in the Diophantine constraint. This can help to improve the conversion from Diophantine constraints to tuples of propositional formulas. The reason is that we can detect cases where the most significant bits are equivalent to 0.

As an example, suppose that all Diophantine variables can take values from $\{0, ..., 3\}$ and that consequently, the conversion ||.|| transforms Diophantine variables into tuples of two propositional variables (i.e., k = 2). Note that by definition, $B^*(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_m \rangle)$ is always a tuple of length n + m, if $m \ge 2$. So if $a, b, c \in \mathcal{A}$, then ||a|| and ||b|| have length 2, ||a * b|| has length 4, and ||a * b * c|| has length 6. However, if one takes the ranges of the coefficients into account, then one can determine that a * b * c has at most the value 3 * 3 * 3 = 27. Thus, only 5 bits are needed for ||a * b * c||, i.e., the most significant bit of ||a * b * c|| is always equivalent to 0. Therefore, it can be omitted (i.e., one should delete the leftmost formula in the 6-tuple ||a * b * c||, resulting in a 5-tuple).

This optimization is particularly helpful when using other ranges than $\{0, ..., 2^k-1\}$ (e.g., when using $\{0, 1, 2\}$ instead of $\{0, 1, 2, 3\}$). Then we have to introduce subformulas that prohibit certain values for the Diophantine variables, but this usually pays off due to the reduced search space.

To evaluate our new SAT-based implementation of polynomial interpretations (AProVE-SAT), we compared it with the non-SAT-based implementations in the termination tools AProVE 1.2 and TTT [17]. In addition, we experimented with a version of AProVE which uses the Diophantine solver of the CiME-tool [7] (AProVE-CiME). The implementations in AProVE 1.2 and AProVE-CiME solve Diophantine constraints by a specialized finite domain constraint satisfaction procedure [8], while TTT uses a "generate-and-test" approach instead. Moreover, we considered a variant AProVE-CLP which applies the *constraint logic programming* engine of SICStus Prolog to find polynomial interpretations.

Finally, we also implemented a variant AProVE-PB which uses the *pseudo-boolean solver* Pueblo [23]. Here, instead of encoding Diophantine constraints to propositional formulas, we adapted the encoding ||.|| from Sect. 3 in order to yield *pseudo-boolean constraints*: For Diophantine variables a over $\{0, \ldots, 2^k - 1\}$ we now define $||a|| = 2^{k-1}a_1 + \ldots + 2a_{k-1} + a_k$, and we define ||n|| = n for $n \in \mathbb{N}$ and $||p \circ q|| = ||p|| \circ ||q||$ for polynomials $p, q \in \mathcal{P}$ and $o \in \{+, *\}$. Afterwards, the resulting constraints are linearized.

We tested the six tools on all 865 TRSs from the *Termination Problem Data* Base 3.2.¹² This is the collection of examples used in the *International Competi*-

¹² The data base is available from http://www.lri.fr/~marche/tpdb/.

tion of Termination Tools 2006. For our experiments, the tools were run on an AMD Athlon 64 at 2.2 GHz. To measure the effect of the different implementations for polynomial interpretations, we configured all tools to use only a basic version of the DP method and no other termination technique.¹³

For each example, we imposed a time limit of 60 seconds (corresponding to the way tools are evaluated in the annual competition) or of 10 minutes, indicated by "Limit" in the following table. The columns "Yes" and "TO" show the number of TRSs for which proving termination with the given configuration succeeds or times out. Finally, "Time" gives the total time in seconds needed for analyzing all 865 examples. The column "Range" specifies the range of the coefficients of polynomials (i.e., if the "Range" is n, then we only searched for coefficients from $\{0, ..., n\}$). The column "Degree" gives the degree of the polynomials. If the "Degree" is 1, then we used linear polynomials and "sm" means that we used simple-mixed¹⁴ polynomials (these are not available in TTT).

			AProVE-SAT		ļ	۱ProVI	E-PB	AProVE 1.2			
Limit	Range	Degree	Yes TO Time		Yes TO Time		Yes	ТО	Time		
60s	1	1	421 0 45.5		421	0	61.6	421	1	151.8	
60s	2	1	431 0 91.8		431	0	158.5	414	48	3633.2	
60s	3	1	434	0	118.6	434	1	222.1	408	81	5793.2
60s	3	sm	440	51	5585.9	427	82	7280.3	404	171	11608.1
10m	1	1	421	0	45.5	421	0	61.6	421	1	691.8
10m	2	1	431	0	91.8	431	0	158.5	418	41	27888.4
10m	3	1	434	0	118.6	434	0	689.6	415	53	38286.4
			A	ProVE	-CLP	A	ProVE	CiME		TT	Г
Limit	Range	Degree	A Yes	ProVE TO	-CLP Time	A Yes	ProVE- TO	CiME Time	Yes	TT TO	Г Time
Limit 60s	Range 1	Degree 1	A Yes 420	ProVE TO 16	-CLP Time 1357.8	A Yes 408	ProVE- TO 1	CiME Time 168.3	Yes 326	TT TO 32	T Time 2568.5
Limit 60s 60s	Range 1 2	Degree 1 1	A Yes 420 420	ProVE TO 16 37	-CLP Time 1357.8 3558.3	A Yes 408 408	ProVE- TO 1 43	CiME Time 168.3 3201.0	Yes 326 335	TT TO 32 83	T Time 2568.5 5677.6
Limit 60s 60s 60s	Range 1 2 3	Degree 1 1 1	A Yes 420 420 407	ProVE TO 16 37 91	-CLP Time 1357.8 3558.3 6459.5	Al Yes 408 408 402	ProVE- TO 1 43 67	CiME Time 168.3 3201.0 5324.1	Yes 326 335 338	TT TO 32 83 110	T 2568.5 5677.6 7426.9
Limit 60s 60s 60s	Range 1 2 3 3	Degree 1 1 1 sm	A Yes 420 420 407 367	ProVE TO 16 37 91 145	-CLP Time 1357.8 3558.3 6459.5 10357.4	Al Yes 408 408 402 361	ProVE- TO 1 43 67 147	CiME Time 168.3 3201.0 5324.1 10107.7	Yes 326 335 338	TT TO 32 83 110	T Time 2568.5 5677.6 7426.9
Limit 60s 60s 60s 10m	Range 1 2 3 3 1	Degree 1 1 1 sm 1	A Yes 420 420 407 367 421	ProVE TO 16 37 91 145 11	-CLP Time 1357.8 3558.3 6459.5 10357.4 7852.2	Al Yes 408 408 402 361 408	ProVE- TO 1 43 67 147 0	CiME Time 168.3 3201.0 5324.1 10107.7 332.7	Yes 326 335 338 338 328	TT TO 32 83 110 16	T Time 2568.5 5677.6 7426.9 14007.8
Limit 60s 60s 60s 10m 10m	Range 1 2 3 3 1 2	Degree 1 1 1 sm 1 1 1 1	A Yes 420 420 407 367 421 423	ProVE TO 16 37 91 145 11 25	-CLP Time 1357.8 3558.3 6459.5 10357.4 7852.2 18795.6	Al Yes 408 408 402 361 408 412	ProVE- TO 1 43 67 147 0 33	CiME Time 168.3 3201.0 5324.1 10107.7 332.7 22190.4	Yes 326 335 338 338 328 337	TT TO 32 83 110 16 68	T Time 2568.5 5677.6 7426.9 14007.8 45046.6

The comparison of the SAT-based configurations AProVE-SAT and AProVE-PB with the non-SAT-based configurations shows that the provers based on SAT solving with our proposed encoding are faster by orders of magnitude. This holds in particular if one considers a higher time limit or polynomials with higher coefficients or degrees (which are needed to increase the number of "Yes"-results, i.e., to increase the power of automated termination proving). Note that for Degree = 1, there are no timeouts in the configuration AProVE-SAT, whereas the non-SAT-based configurations have many timeouts. Due to the increased efficiency, the number of examples where termination can be proved within the time limit is considerably higher in the SAT-based configurations. To indicate the size of the SAT problems obtained, the largest resulting propositional formula contained almost 3.5 million variables and more than 12 million clauses. Comparing the SAT-based configurations AProVE-SAT and AProVE-PB shows that the approach of converting termination problems to propositional formulas is currently preferable to the related approach of converting them to pseudo-boolean constraints.

¹³ Such a configuration was not possible for other tools beside AProVE, TTT, and CiME.

¹⁴ A non-unary polynomial (with n > 1 in (2)) is simple-mixed if we have $e_{ij} \leq 1$ for all its exponents. A unary polynomial is simple-mixed if it has the form $a + b x_1 + c x_1^2$.

We also ran experiments with higher ranges but it turned out that they are rarely needed. For Degree = 1 and Limit = 10 minutes, a range of 6 would increase the number of "Yes"-results from 434 to 436 while the runtime increases from 118.6 to 748.1 seconds. Even if one uses a range of 63, the number of "Yes"-results does not increase further, but the runtime goes up to 56235.5 seconds.

The next table shows the effect of our optimizations (with linear polynomials and a 60 seconds time limit). While AProVE-SAT uses all optimizations (a) - (c), we also give the results obtained if one omits any one of these optimizations. The table demonstrates that each optimization has a considerable positive effect, in particular if one regards higher ranges for the coefficients.

	APr	ъVЕ	-SAT	no optimization (a)		no c	ptim	nization (b)	no optimization (c)			
Range	Yes	ТО	Time	Yes	TO	Time	Yes	TO	Time	Yes	ТО	Time
1	421	0	45.5	421	0	56.6	421	0	49.7	421	0	50.1
2	431	0	91.8	431	0	107.5	431	0	93.9	431	0	114.7
3	434	0	118.6	434	1	159.4	434	0	202.8	434	0	138.7

The last table demonstrates the use of SAT solving for negative linear polynomials with a time limit of 60 seconds. If the "*Range*" is n, then now the constant coefficient may take values from $\{-n, ..., n\}$.

	AP	roVI	E-SAT	A	Pro∖	/E 1.2		T٦	T
Range	Yes	ΤO	Time	Yes	ΤO	Time	Yes	ΤO	Time
1	440	0	98.0	441	22	1863.7	341	106	7307.3
2	479	1	305.4	460	126	8918.3	360	181	12337.3
3	483	4	1092.4	434	221	15570.9	361	247	16927.7

Again, the SAT-based configuration is much faster and substantially more powerful than the non-SAT-based ones. Compared to the results for non-negative polynomials, a few timeouts occur for larger ranges, but negative polynomials increase the power significantly whereas the runtimes only increase moderately. In future work, we will extend our SAT encoding in order to deal also with polynomials where other (non-constant) coefficients can be negative [17].

As mentioned in Sect. 1, the SAT-based implementation of polynomial interpretations was used by AProVE in the *International Competition of Termination Tools 2006*. Here, AProVE was configured to use several other termination techniques in addition to polynomial interpretations. Due to the speed of our new SAT-based approach, AProVE could try polynomial interpretations (also with higher ranges) as one of the first termination techniques. In case of failure, there was still enough time to try other termination techniques afterwards. With a time limit of 60 seconds for each example, AProVE could prove termination of 633 TRSs and thereby it was the winner of the competition.

To summarize, automated termination analysis is a field where SAT solving has turned out to be extremely useful. At the same time, this field also poses new challenges for SAT solving, since for higher ranges and higher degrees of the polynomials, one sometimes obtains SAT problems which are hard for current SAT solvers.¹⁵ To experiment with our implementation and for further details on our experiments (also with other SAT solvers), please see [10].

Acknowledgments. We thank Daniel Le Berre for helpful comments.

 $^{^{15}}$ We have therefore submitted some of these problems to the SAT competition 2007.

References

- 1. E. Annov, M. Codish, J. Giesl, P. Schneider-Kamp, and R. Thiemann. A SAT-based implementation for RPO termination. In *Short Papers of LPAR '06*, 2006.
- T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical Computer Science, 236:133-178, 2000.
- T. Arts and J. Giesl. A collection of examples for termination of term rewriting using dependency pairs. Technical Report AIB-2001-09, RWTH Aachen, 2001.
- 4. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.
- M. Codish, V. Lagoon, and P. Stuckey. Solving partial order constraints for LPO termination. In Proc. RTA '06, LNCS 4098, p. 4-18, 2006.
- M. Codish, P. Schneider-Kamp, V. Lagoon, R. Thiemann, and J. Giesl. SAT solving for argument filterings. In Proc. LPAR '06, LNAI 4246, p. 30-44, 2006.
- 7. E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME. http://cime.lri.fr.
- 8. E. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically proving termination using polynomial interpretations. J. Aut. Reason., 34(4):325-363, 2005.
- N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. SAT '03, LNCS 2919, p. 502-518, 2004.
- 10. Empirical evaluation of "SAT solving for termination analysis with polynomial interpretations". http://aprove.informatik.rwth-aachen.de/eval/SATPOLO.
- J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination of term rewriting. In *Proc. IJCAR* '06, LNAI 4130, p. 574-588, 2006.
- J. Giesl, R. Thiemann, and P. Schneider-Kamp. The DP framework: Combining Techniques for Automated Termination Proofs. In *Proc. LPAR*'04, LNAI 3452, p. 301-331, 2005.
- J. Giesl, S. Swiderski, P. Schneider-Kamp, and R. Thiemann. Automated termination analysis for Haskell: From term rewriting to programming languages. In Proc. RTA '06, LNCS 4098, p. 297-312, 2006.
- 14. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination proofs in the DP framework. *Proc. IJCAR '06*, LNAI 4130, p. 281-286, 2006.
- J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving dependency pairs. *Journal of Automated Reasoning*, 37(3): 155-203, 2006.
- N. Hirokawa and A. Middeldorp. Automating the dependency pair method. Information and Computation, 199(1,2):172-199, 2005.
- N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and features. Information and Computation, 205(4):474-511, 2007.
- D. Hofbauer and J. Waldmann. Termination of string rewriting with matrix interpretations. In Proc. RTA '06, LNCS 4098, p. 328-342, 2006.
- 19. H. Hong and D. Jakuš. Testing positiveness of polynomials. JAR, 21(1):23-38, 1998.
- D. Lankford. On proving term rewriting systems are Noetherian. Technical Report MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.
- 21. D. Le Berre et al. SAT4J satisfiability library for Java. http://www.sat4j.org.
- P. Schneider-Kamp, J. Giesl, A. Serebrenik, R. Thiemann. Automated termination analysis for logic programs by term rewriting. In *Proc. LOPSTR '06*, LNCS, 2007.
- H. M. Sheini and K. A. Sakallah. Pueblo: A hybrid pseudo-boolean SAT solver. Journal on Satisfiability, Boolean Modeling and Computation, 2:61-96, 2006.
- G. Tseitin. On the complexity of derivation in propositional calculus. In Studies in Constructive Mathematics and Mathematical Logic, p. 115-125, 1968.
- H. Zankl, N. Hirokawa, and A. Middeldorp. Constraints for argument filterings. In Proc. SOFSEM '07, LNCS 4362, p. 579-590, 2007.
- 26. H. Zankl and A. Middeldorp. KBO as a satisfaction problem. Proc. WST'06, 2006.

A Proofs

Lemma 5 (Correctness of Encoding Polynomials). For every polynomial $p \in \mathcal{P}$ and every propositional interpretation \mathfrak{I} , we have $\mathcal{D}_{\mathfrak{I}}(p) = \mathfrak{I}(||p||)$.

Proof. We perform structural induction on p. If p is a Diophantine variable $a \in \mathcal{A}$, then we have

$$\mathcal{D}_{\mathfrak{I}}(a) = \mathfrak{I}(\langle a^1, \dots, a^k \rangle) \qquad \text{by Def. 4} \\ = \mathfrak{I}(||a||) \qquad \qquad \text{by (7)}$$

If p is a number n, then we have

$$\mathcal{D}_{\mathfrak{I}}(n) = n \qquad \text{by Def. 4} \\ = \mathfrak{I}(||n||) \qquad \text{by (8)}$$

Now we regard the case of a polynomial of the form p + q. Here, we show the following claim for all tuples of propositional formulas:

$$\Im(\langle \varphi_1, ..., \varphi_n \rangle) + \Im(\langle \psi_1, ..., \psi_m \rangle) = \Im(B^+(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_m \rangle))$$
(14)

This suffices for the lemma, because then we have

$\mathcal{D}_{\mathfrak{I}}(p+q) = \mathcal{D}_{\mathfrak{I}}(p) + \mathcal{D}_{\mathfrak{I}}(q)$	by Def. 2
$=\Im(p)+\Im(q)$	by the induction hypothesis
$=\Im(B^+(p , q))$	by (14)
$=\Im(p+q)$	by (10)

To prove the claim (14), note that it is sufficient to regard the case where n = m. The reason is that we obviously have $\Im(\langle \psi_1, ..., \psi_m \rangle) = \Im(\langle 0, ..., 0, \psi_1, ..., \psi_m \rangle)$ and $\Im(\langle \varphi_1, ..., \varphi_n \rangle) = \Im(\langle 0, ..., 0, \varphi_1, ..., \varphi_n \rangle)$. We now use induction on n. If n = 1, then we clearly have

$$\Im(\varphi) + \Im(\psi) = 2 * \Im(\varphi \land \psi) + \Im(\varphi \oplus \psi) = \Im(\langle \varphi \land \psi, \varphi \oplus \psi \rangle) = \Im(B^+(\langle \varphi \rangle, \langle \psi \rangle)).$$

If n > 1, then we obtain the following. Here, let $B^+(\langle \varphi_2, ..., \varphi_n \rangle, \langle \psi_2, ..., \psi_n \rangle) = \langle \xi_1, ..., \xi_n \rangle.$

$$\begin{split} &\Im(\langle \varphi_1,...,\varphi_n\rangle) + \Im(\langle \psi_1,...,\psi_n\rangle) \\ &= 2^{n-1} * (\Im(\varphi_1) + \Im(\psi_1)) + \Im(\langle \varphi_2,...,\varphi_n\rangle) + \Im(\langle \psi_2,...,\psi_n\rangle) \\ &= 2^{n-1} * (\Im(\varphi_1) + \Im(\psi_1)) + \Im(B^+(\langle \varphi_2,...,\varphi_n\rangle, \langle \psi_2,...,\psi_n\rangle)) \quad \text{by ind. hyp.} \\ &= 2^{n-1} * (\Im(\varphi_1) + \Im(\psi_1)) + \Im(\langle \xi_1,...,\xi_n\rangle) \\ &= 2^{n-1} * (\Im(\varphi_1) + \Im(\psi_1) + \Im(\xi_1)) + \Im(\langle \xi_2,...,\xi_n\rangle) \\ &= 2^{n-1} * \Im(B^{2or3}(\varphi_1,\psi_1,\xi_1), B^{1or3}(\varphi_1,\psi_1,\xi_1)\rangle) + \Im(\langle \xi_2,...,\xi_n\rangle) \\ &= 2^n * \Im(B^{2or3}(\varphi_1,\psi_1,\xi_1)) + 2^{n-1} * \Im(B^{1or3}(\varphi_1,\psi_1,\xi_1)) + \Im(\langle \xi_2,...,\xi_n\rangle) \\ &= \Im(B^{2or3}(\varphi_1,\psi_1,\xi_1), B^{1or3}(\varphi_1,\psi_1,\xi_1),\xi_2,...,\xi_n\rangle) \\ &= \Im(B^+(\langle \varphi_1,...,\varphi_n\rangle, \langle \psi_1,...,\psi_n\rangle)) \end{split}$$

Finally we regard the case of a polynomial of the form p * q. Here, we show the following claim for all tuples of propositional formulas:

$$\Im(\langle \varphi_1, ..., \varphi_n \rangle) * \Im(\langle \psi_1, ..., \psi_m \rangle) = \Im(B^*(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_m \rangle))$$
(15)

This suffices for the lemma, because then we have

$$\mathcal{D}_{\mathfrak{I}}(p * q) = \mathcal{D}_{\mathfrak{I}}(p) * \mathcal{D}_{\mathfrak{I}}(q) \qquad \text{by Def. 2} \\ = \mathfrak{I}(||p||) * \mathfrak{I}(||q||) \qquad \text{by the induction hypothesis} \\ = \mathfrak{I}(B^*(||p||, ||q||)) \qquad \text{by (15)} \\ = \mathfrak{I}(||p * q||) \qquad \text{by (10)}$$

To prove the claim (15), we use induction on m. If m = 1, then we clearly have

$$\Im(\langle \varphi_1, ..., \varphi_n \rangle) * \Im(\psi) = \Im(\langle \varphi_1 \wedge \psi, ..., \varphi_n \wedge \psi \rangle) = \Im(B^*(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi \rangle)).$$

If m > 1, then we obtain

$$\begin{split} \mathfrak{I}(\langle \varphi_1, ..., \varphi_n \rangle) &* \mathfrak{I}(\langle \psi_1, ..., \psi_m \rangle) \\ &= 2^{m-1} * \mathfrak{I}(\langle \varphi_1, ..., \varphi_n \rangle) * \mathfrak{I}(\psi_1) + \mathfrak{I}(\langle \varphi_1, ..., \varphi_n \rangle) * \mathfrak{I}(\langle \psi_2, ..., \psi_m \rangle) \\ &= 2^{m-1} * \mathfrak{I}(\langle \varphi_1, ..., \varphi_n \rangle) * \mathfrak{I}(\psi_1) + \mathfrak{I}(B^*(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_2, ..., \psi_m \rangle)) \text{ by ind. hyp.} \\ &= \mathfrak{I}(\langle \varphi_1 \wedge \psi_1, ..., \varphi_n \wedge \psi_1, \underbrace{0, ..., 0}_{m-1 \text{ times}} \rangle) + \mathfrak{I}(B^*(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_2, ..., \psi_m \rangle)) \\ &= \mathfrak{I}(B^+(\langle \varphi_1 \wedge \psi_1, ..., \varphi_n \wedge \psi_1, \underbrace{0, ..., 0}_{m-1 \text{ times}} \rangle, B^*(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_2, ..., \psi_m \rangle))) \text{ by (14)} \\ &= \mathfrak{I}(B^*(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_m \rangle)) \end{split}$$

Theorem 6 (Correctness of Encoding Diophantine Constraints). For every $\alpha \in C$ and every propositional interpretation \mathfrak{I} , we have $\mathcal{D}_{\mathfrak{I}}(\alpha) = \mathfrak{I}(||\alpha||)$.

Proof. We perform structural induction on α . If α is *true*, then we have

$$\begin{aligned} \mathcal{D}_{\mathfrak{I}}(true) &= 1 & \text{by Def. 2} \\ &= \mathfrak{I}(1) & \text{by Def. 3} \\ &= \mathfrak{I}(||true||) & \text{by (11)} \end{aligned}$$

The case where α is *false* is analogous.

Now we regard the case where α has the form p > q. Here, we show the following claim for all tuples of propositional formulas:

$$\mathfrak{I}(\langle \varphi_1, ..., \varphi_n \rangle) > \mathfrak{I}(\langle \psi_1, ..., \psi_m \rangle) \text{ iff } \mathfrak{I}(B^>(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_m \rangle)) = 1 \quad (16)$$

This suffices for the theorem, because then we have

$$\begin{aligned} \mathcal{D}_{\mathfrak{I}}(p > q) &= 1 \quad \text{iff} \quad \mathcal{D}_{\mathfrak{I}}(p) > \mathcal{D}_{\mathfrak{I}}(q) & \text{by Def. 2} \\ & \text{iff} \quad \mathfrak{I}(||p||) > \mathfrak{I}(||q||) & \text{by Lemma 5} \\ & \text{iff} \quad \mathfrak{I}(B^{>}(||p||, ||q||)) = 1 & \text{by (16)} \\ & \text{iff} \quad \mathfrak{I}(||p > q||) = 1 & \text{by (12)} \end{aligned}$$

To prove the claim (16), note that it is sufficient to regard the case where n = m. The reason is that again we have $\Im(\langle \psi_1, ..., \psi_m \rangle) = \Im(\langle 0, ..., 0, \psi_1, ..., \psi_m \rangle)$ and $\Im(\langle \varphi_1, ..., \varphi_n \rangle) = \Im(\langle 0, ..., 0, \varphi_1, ..., \varphi_n \rangle)$. We now use induction on n. If n = 1, then we clearly have

$$\Im(\varphi) > \Im(\psi)$$
 iff $\Im(\varphi \land \neg \psi) = 1$ iff $\Im(B^{>}(\langle \varphi \rangle, \langle \psi \rangle)) = 1.$

If n > 1, then we obtain

Next we regard the case where α has the form p = q. Note that by the definition of $B^{=}$, we obviously have the following for all tuples of propositional formulas:

$$\mathfrak{I}(\langle \varphi_1, ..., \varphi_n \rangle) = \mathfrak{I}(\langle \psi_1, ..., \psi_m \rangle) \text{ iff } \mathfrak{I}(B^{-}(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_m \rangle)) = 1 \quad (17)$$

This suffices for the theorem, because then we have

$\mathcal{D}_{\mathfrak{I}}(p=q) = 1$	iff $\mathcal{D}_{\mathfrak{I}}(p) = \mathcal{D}_{\mathfrak{I}}(q)$	by Def. 2
	iff $\Im(p) = \Im(q)$	by Lemma 5
	iff $\Im(B^{=}(p , q)) = 1$	by (17)
	iff $\Im(p=q) = 1$	by (12)

Finally, we regard non-atomic Diophantine constraints α . Here, the theorem follows immediately from the induction hypothesis.

Now we will show that the size of our encoding is indeed polynomial. For polynomials and for Diophantine constraints, we measure their size by the number of symbols, i.e.

- |true| = |false| = |a| = |n| = 1 for every $a \in \mathcal{A}$ and every $n \in \mathbb{N}$
- |p+q| = |p*q| = |p=q| = |p>q| = 1 + |p| + |q| for every $p, q \in \mathcal{P}$
- $|\neg \alpha| = 1 + |\alpha|$ for every $\alpha \in \mathcal{C}$
- $|\alpha \circ \beta| = 1 + |\alpha| + |\beta|$ for every $\alpha, \beta \in \mathcal{C}$ and every $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow, \oplus\}$

To store propositional formulas we use directed acyclic graphs (DAGs) where we can easily share common sub-formulas. We will share every node for the Boolean constants 0, 1 and for the propositional variables \mathcal{V} . These nodes do not have any outgoing edges, i.e., they are leaves of the DAG. For every Boolean operator $\circ \in \{\neg, \land, \lor, \rightarrow, \leftrightarrow, \oplus\}$ we obtain nodes which have one (\neg) or two outgoing edges. Thus, the number of edges in the DAG is at most twice the number of nodes. Therefore, it is sensible to define the *size* of a propositional formula φ as the number $\mathcal{N}(\varphi)$ of nodes of the DAG. Similarly, $\mathcal{N}(\langle \varphi_1, \ldots, \varphi_n \rangle)$ is the number of nodes needed for the DAG(s) representing the formulas $\varphi_1, \ldots, \varphi_n$, where these DAGs may of course share common subformulas. The following lemma shows how to approximate the size of the formulas resulting from our encoding.

Lemma 11 (Sizes and Lengths of the Encodings). Let $n, m \in \mathbb{N}$ with $n, m \geq 1$, let $p \in \mathcal{P}$, and let $x \in \mathcal{P} \cup \mathcal{C}$ such that every number in x is $\leq 2^k - 1$. W.l.o.g., whenever we encode a product $B^*(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_m \rangle)$, then we assume $n \geq m$. For any tuple of formulas, let \mathcal{L} compute its length, i.e., $\mathcal{L}(\langle \varphi_1, ..., \varphi_n \rangle) = n$. For $\circ \in \{+, *\}$ let $\mathcal{L}^{\circ}(n, m)$ be the length of the tuple $B^{\circ}(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_m \rangle)$. For $\circ \in \{+, *, =, >\}$ we define $\mathcal{N}^{\circ}(n, m)$ such that

 $\mathcal{N}(||B^{\circ}(\langle \varphi_1,...,\varphi_n\rangle,\langle \psi_1,...,\psi_m\rangle)||) = \mathcal{N}(||\langle \varphi_1,...,\varphi_n\rangle||) + \mathcal{N}(||\langle \psi_1,...,\psi_m\rangle||) + \mathcal{N}^{\circ}(n,m).$

In other words, $\mathcal{N}^{\circ}(n,m)$ is the number of additional nodes required to encode $B^{\circ}(\langle \varphi_1, ..., \varphi_n \rangle, \langle \psi_1, ..., \psi_m \rangle)$. Here, "additional" means that the number of nodes required to represent the inputs $\langle \varphi_1, ..., \varphi_n \rangle$ and $\langle \psi_1, ..., \psi_m \rangle$ is not counted. Then we have:

- (i) $\mathcal{L}^+(n,m) = max(n,m) + 1$
- (*ii*) $\mathcal{L}^*(n,m) \le n+m$
- (iii) $\mathcal{L}(||p||) \le |p| * k$
- (iv) $\mathcal{N}^+(n,m) \leq 7 * max(n,m)$
- (v) $\mathcal{N}^*(n,m) \le 16 * n * m$
- (vi) $\mathcal{N}^{=}(n,m) \leq 2 * max(n,m)$
- $(vii) \mathcal{N}^{>}(n,m) \leq 5 * max(n,m)$
- (viii) $\mathcal{N}(||x||) \le 8 * |x|^2 * k^2$
- Proof. (i) We perform induction on the recursive definition of B^+ . If n > mthen $\mathcal{L}^+(n,m) = \mathcal{L}^+(n,(n-m)+m) = \mathcal{L}^+(n,n) \stackrel{(ind.)}{=} n+1 = max(n,m)+1$. The case n < m is similar. For n = m = 1 we obtain $\mathcal{L}^+(n,m) = 2 = max(n,m) + 1$. Finally, for $n = m \ge 2$ we conclude $\mathcal{L}^+(n,m) = 1 + 1 + (\mathcal{L}^+(n-1,m-1)-1) \stackrel{(ind.)}{=} 1 + (max(n-1,m-1)+1) = 1 + max(n,m)$.
 - (ii) We perform induction on m. If m = 1 then $\mathcal{L}^*(n, m) = n < n+1 = n+m$. Otherwise, if $m \ge 2$ we obtain $\mathcal{L}^*(n, m) = \mathcal{L}^+(n+m-1, \mathcal{L}^*(n, m-1)) \stackrel{(i)}{=} max(n+m-1, \mathcal{L}^*(n, m-1)) + 1 \stackrel{(ind.)}{\leq} max(n+m-1, n+m-1) + 1 = n+m$.
 - (iii) We perform induction on *p*. If *p* is a number or a variable then by definition of *k* we obtain $\mathcal{L}(||p||) \leq k = 1 * k = |p| * k$. Otherwise, if $p = p_1 + p_2$ then $\mathcal{L}(||p||) = \mathcal{L}^+(\mathcal{L}(||p_1||), \mathcal{L}(||p_2||)) \stackrel{(i)}{=} max(\mathcal{L}(||p_1||), \mathcal{L}(||p_2||)) + 1 \leq max(|p_1|*k, |p_2|*k) + 1 \leq (|p_1| + |p_2| + 1)k = |p|*k$. Finally, if $p = p_1 * p_2$ then $\mathcal{L}(||p||) = \mathcal{L}^*(\mathcal{L}(||p_1||), \mathcal{L}(||p_2||)) \leq \mathcal{L}(||p_1||) + \mathcal{L}(||p_2||) \leq |p_1|*k + |p_2|*k + k \leq (|p_1| + |p_2| + 1)k = |p| *k$.
 - (iv) We first show $\mathcal{N}^+(n,n) < 7n$ by induction on n. For n = 1 we obtain $\mathcal{N}^+(n,n) = 2 < 7n$. And for $n \ge 2$ we conclude $\mathcal{N}^+(n,n) = 5 + 2 + \mathcal{N}^+(n-1,n-1) < 7 + 7(n-1) = 7n$. Finally, if n > m then $\mathcal{N}^+(n,m) = 1 + \mathcal{N}^+(n,(n-m)+m) = 1 + \mathcal{N}^+(n,n) < 1 + 7n = 1 + 7 * max(n,m)$. Thus, $\mathcal{N}^+(n,m) \le 7 * max(n,m)$. The case n < m is similar.
 - (v) We perform induction on m. By the requirements of the lemma we can assume $n \ge m$. If m = 1 then $\mathcal{N}^*(n, m) = n < 16 * n * m$. Otherwise, if $m \ge 2$ we obtain

$$\begin{split} \mathcal{N}^*(n,m) &= \mathcal{N}^+(n+m-1,\mathcal{L}^*(n,m-1)) + \mathcal{N}^*(n,m-1) + n + 1 \\ &\stackrel{(iv)}{\leq} 7*max(n+m-1,\mathcal{L}^*(n,m-1)) + \mathcal{N}^*(n,m-1) + n + 1 \\ &\stackrel{(ii)}{\leq} 7*(n+m-1) + \mathcal{N}^*(n,m-1) + n + 1 \\ &\stackrel{(ind.)}{\leq} 7*(n+m-1) + 16*n*(m-1) + n + 1 \\ &= 16*n*m - 8*n + 7*m - 6 \\ &< 16*n*m, \quad \text{since } n > m \end{split}$$

- (vi) The proof is completely similar to (iv).
- (vii) The proof is completely similar to (iv).
- (viii) We perform structural induction on x.

For $x \in \mathcal{A} \cup \mathbb{N} \cup \{true, false\}$ we obviously have $\mathcal{N}(||x||) \le k \le 8 * |x|^2 * k^2$. If $x = p \circ q$ with $o \in \{+, *, >, =\}$ then

$$\mathcal{N}(||x||) = \mathcal{N}^{\circ}(\mathcal{L}(||p||), \mathcal{L}(||q||)) + \mathcal{N}(||p||) + \mathcal{N}(||q||)$$

$$\leq \mathcal{N}^{*}(\mathcal{L}(||p||), \mathcal{L}(||q||)) + \mathcal{N}(||p||) + \mathcal{N}(||q||), \quad \text{by (iv) - (vii)}$$

$$\stackrel{(i)}{\leq} 16 * \mathcal{L}(||p||) * \mathcal{L}(||q||) + \mathcal{N}(||p||) + \mathcal{N}(||q||)$$

$$\stackrel{(ind.)}{\leq} 16 * |p| * |q| * k^{2} + \mathcal{N}(||p||) + \mathcal{N}(||q||)$$

$$\stackrel{(ind.)}{\leq} 16 * |p| * |q| * k^{2} + 8 * |p|^{2} * k^{2} + 8 * |q|^{2} * k^{2}$$

$$= 8 * (|p|^{2} + 2 * |p| * |q| + |q|^{2}) * k^{2}$$

$$= 8 * (|p| + |q|)^{2} * k^{2}$$

$$< 8 * |x|^{2} * k^{2}$$

$$\begin{aligned} \text{If } x &= \neg \alpha \text{ then } \mathcal{N}(||x||) = 1 + \mathcal{N}(||\alpha||)^{\vee} \leq 1 + 8 * |\alpha|^2 * k^2 < 8 * k^2 + 8 * \\ |\alpha|^2 * k^2 \leq 8 * (1 + |\alpha|)^2 * k^2 = 8 * |x|^2 * k^2. \\ \text{Finally, if } x &= \alpha \circ \beta \text{ with } \circ \in \{\land, \lor, \rightarrow, \leftrightarrow, \oplus\} \text{ then } \mathcal{N}(||x||) = 1 + \mathcal{N}(||\alpha||) + \\ \mathcal{N}(||\beta||)^{(ind.)} 1 + 8 * |\alpha|^2 * k^2 + 8 * |\beta|^2 * k^2 < 8 * (1 + |\alpha| + |\beta|)^2 * k^2 = 8 * |x|^2 * k^2. \end{aligned}$$

Now we can present the desired theorem which shows that the size of our encoding is polynomial.

Theorem 7 (Size of Encoding). Let $\alpha \in C$ such that every number in α is $\leq 2^k - 1$. Then the size of $||\alpha||$ is in $\mathcal{O}(|\alpha|^2 * k^2)$, where $|\alpha|$ is the size of α .

Proof. The theorem is an immediate consequence of Lemma 11 (viii). \Box

Theorem 10 (Correspondence of Def. 8 and 9). Let \mathcal{D} be a Diophantine interpretation (which may also map **bold** variables to integers). Let \mathcal{P} ol be an abstract polynomial interpretation, and let t be a term. Then $\mathcal{D}(\alpha_t^{left}) = 1$ implies $\mathcal{D}([t]_{\mathcal{P}ol}^{left}) = [t]_{\mathcal{D}(\mathcal{P}ol)}^{left}$ and $\mathcal{D}(\alpha_t^{right}) = 1$ implies $\mathcal{D}([t]_{\mathcal{P}ol}^{right}) = [t]_{\mathcal{D}(\mathcal{P}ol)}^{right}$.

Proof. We use structural induction on t and only prove the part $\mathcal{D}([t]_{\mathcal{P}ol}^{left}) = [t]_{\mathcal{D}(\mathcal{P}ol)}^{left}$. The part $\mathcal{D}([t]_{\mathcal{P}ol}^{right}) = [t]_{\mathcal{D}(\mathcal{P}ol)}^{right}$ is proved in an analogous way. If t is a variable, then we have

$$\mathcal{D}([t]_{\mathcal{P}ol}^{left}) = \mathcal{D}(t) \qquad \text{by Def. 9} \\ = t \qquad \text{cf. Footnote 6} \\ = [t]_{\mathcal{D}(\mathcal{P}ol)}^{left}$$

Next we regard the case $t = f(t_1, \ldots, t_n)$, $ncon(p_{1\mathcal{D}(\mathcal{P}ol)}) = 0$, and $0 > con(p_{1\mathcal{D}(\mathcal{P}ol)})$ where $p_{1\mathcal{D}(\mathcal{P}ol)} = f_{\mathcal{D}(\mathcal{P}ol)}([t_1]_{\mathcal{D}(\mathcal{P}ol)}^{left}, \ldots, [t_n]_{\mathcal{D}(\mathcal{P}ol)}^{left})$. As $\mathcal{D}(\alpha_t^{left}) = 1$, we also have $\mathcal{D}(\alpha_{t_i}^{left}) = 1$ for all $i \in \{1, \ldots, n\}$. So the induction hypothesis implies $\mathcal{D}([t_i]_{\mathcal{P}ol}^{left}) = [t_i]_{\mathcal{D}(\mathcal{P}ol)}^{left}$. Hence for $p_{1\mathcal{P}ol} = f_{\mathcal{P}ol}([t_1]_{\mathcal{P}ol}^{left}, \ldots, [t_n]_{\mathcal{P}ol}^{left})$, we

have

$$\mathcal{D}(p_{1\mathcal{P}ol}) = \mathcal{D}(f_{\mathcal{P}ol}([t_1]_{\mathcal{P}ol}^{left}, \dots, [t_n]_{\mathcal{P}ol}^{left}))$$

$$= f_{\mathcal{D}(\mathcal{P}ol)}(\mathcal{D}([t_1]_{\mathcal{P}ol}^{left}), \dots, \mathcal{D}([t_n]_{\mathcal{P}ol}^{left}))$$

$$= f_{\mathcal{D}(\mathcal{P}ol)}([t_1]_{\mathcal{D}(\mathcal{P}ol)}^{left}, \dots, [t_n]_{\mathcal{D}(\mathcal{P}ol)}^{left})$$
by the induction hypothesis
$$= p_{1\mathcal{D}(\mathcal{P}ol)}$$

Therefore, we also have

$$\mathcal{D}(ncon(p_{1\mathcal{P}ol})) = ncon(p_{1\mathcal{D}(\mathcal{P}ol)})$$
 and $\mathcal{D}(con(p_{1\mathcal{P}ol})) = con(p_{1\mathcal{D}(\mathcal{P}ol)})$

This implies 16

$$ncon(p_{1\mathcal{D}(\mathcal{P}ol)}) = 0$$
 iff $\mathcal{D}(ncon(p_{1\mathcal{P}ol}) = 0)$ iff $\mathcal{D}(\alpha_{ncon(p_{1\mathcal{P}ol})=0}) = 1$

and

$$0 > con(p_{1\mathcal{D}(\mathcal{P}ol)})$$
 iff $\mathcal{D}(0 > con(p_{1\mathcal{D}(\mathcal{P}ol)})) = 1.$

Therefore, $\mathcal{D}(\alpha_t^{left}) = 1$ implies $\mathcal{D}(\boldsymbol{b}_t^{left}) = 0$. Thus,

$$\mathcal{D}([t]_{\mathcal{P}ol}^{left}) = \mathcal{D}(ncon(p_{1\mathcal{P}ol}) + \boldsymbol{b}_{t}^{left})$$

= $\mathcal{D}(ncon(p_{1\mathcal{P}ol})) + \mathcal{D}(\boldsymbol{b}_{t}^{left})$
= $ncon(p_{1\mathcal{D}(\mathcal{P}ol)}) + 0$
= 0
= $[t]_{\mathcal{D}(\mathcal{P}ol)}^{left}$

Finally, we regard the case $t = f(t_1, \ldots, t_n)$, where $ncon(p_{1\mathcal{D}(\mathcal{P}ol)}) \neq 0$ or $0 \leq con(p_{1\mathcal{D}(\mathcal{P}ol)})$. Similar to the previous case, one can show that $\mathcal{D}(\alpha_t^{left}) = 1$ implies

$$\mathcal{D}(\boldsymbol{b}_{t}^{left}) = \mathcal{D}(con(p_{1\mathcal{P}ol})) = con(p_{1\mathcal{D}(\mathcal{P}ol)}).$$

Hence,

$$\mathcal{D}([t]_{\mathcal{P}ol}^{left}) = \mathcal{D}(ncon(p_{1\mathcal{P}ol}) + \boldsymbol{b}_{t}^{left})$$

= $\mathcal{D}(ncon(p_{1\mathcal{P}ol})) + \mathcal{D}(\boldsymbol{b}_{t}^{left})$
= $ncon(p_{1\mathcal{D}(\mathcal{P}ol)}) + con(p_{1\mathcal{D}(\mathcal{P}ol)})$
= $p_{1\mathcal{D}(\mathcal{P}ol)}$
= $[t]_{\mathcal{D}(\mathcal{P}ol)}^{left}$

г		ъ
н		L
н		L

¹⁶ Note that by (6), $\alpha_{p=0}$ requires that all coefficients of p must be 0. Thus, we indeed have $\mathcal{D}(\alpha_{p=0}) = \mathcal{D}(p=0)$ for all Diophantine interpretations \mathcal{D} .

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years. A complete list of reports dating back to 1987 is available from http://aib. informatik.rwth-aachen.de/. To obtain copies consult the above URL or send your request to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

- 2001-01 * Jahresbericht 2000
- 2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz Traces
- 2001-03 Thierry Cachat: The power of one-letter rational languages
- 2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model Checking for the Alternation Free mu-Calculus
- 2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages
- 2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-
- Order Logic
- 2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem
- 2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth International Workshop on the Language-Action Perspective on Communication Modelling
- 2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of term rewriting using dependency pairs
- 2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures
- 2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmiersprachen und Grundlagen der Programmierung
- 2002-01 * Jahresbericht 2001
- 2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-Sensitive Rewrite Systems
- 2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular MSC Languages
- 2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-Sensitive Rewriting
- 2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Requirements and Architectures for Software Product Lines
- 2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic Finite Automata
- 2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mixture Densities
- 2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java
- $2002\text{-}09 \quad \text{Markus Mohnen: Interfaces with Default Implementations in Java$
- 2002-10 Martin Leucker: Logics for Mazurkiewicz traces
- 2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting
- 2003-01 * Jahresbericht 2002
- 2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term Rewriting
- 2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

- 2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke: Improving Dependency Pairs
- 2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACEhard
- 2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word Models to Alignment Templates
- 2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Softwareproduktlinienentwicklung
- 2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke: Mechanizing Dependency Pairs
- 2004-01 * Fachgruppe Informatik: Jahresbericht 2003
- 2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expressively equivalent to EMSO logic
- 2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 2nd International Workshop on Higher-Order Rewriting
- 2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 Fifth International Workshop on Rule-Based Programming
- 2004-05 Herbert Kuchen (ed.): WFLP 04 13th International Workshop on Functional and (Constraint) Logic Programming
- 2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 4th International Workshop on Reduction Strategies in Rewriting and Programming
- 2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 7th International Workshop on Termination
- 2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Compiling Recursive Function Definitions with Strictness Information
- 2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Parameterized Power Domination Complexity
- 2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-Party Computation with Security Modules
- 2005-01 * Fachgruppe Informatik: Jahresbericht 2004
- 2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An Offensive Approach to Teaching Information Security: "Aachen Summer School Applied IT Security"
- 2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Disproving Termination of Higher-Order Functions
- 2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for the Steiner Tree Problem
- 2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing Honeypots
- 2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Information
- 2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Exploring a Root-Cause Methodology to Prevent Distributed Denial-of-Service Attacks
- 2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With Applications To Max-Cut

- 2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General Hybrid Adversary Structures
- 2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts
- 2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed Nash Equilibrium Conjecture
- 2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Efficient Reductions for Wait-Free Termination Detection in Faulty Distributed Systems
- 2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting Failure Detection and Consensus in Omission Failure Environments
- 2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization
- 2005-15 Uwe Naumann: The Complexity of Derivative Computation
- 2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-Linear Code)
- 2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedural Adjoint Code)
- 2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geisberger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann, Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises "Features"
- 2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented LL-Parsers
- 2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbildung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiterbildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. August 2005 in Köln organisiert von RWTH Aachen in Kooperation mit BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.
- 2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revisited
- 2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Randomized Fair Exchange with Secret Shared Coins
- 2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking: Decision Making Based on Approximate and Smoothed Pareto Curves
- 2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering with Motes: Real-World Physical Attacks on Wireless Sensor Networks
- 2006-01 * Fachgruppe Informatik: Jahresbericht 2005
- 2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems
- 2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated by the Differentiation-Enabled NAGWare Fortran Compiler
- 2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static Memory Jacobian Accumulation
- 2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt, Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint Code by Source Transformation with OpenAD/F
- 2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divideand-Color
- 2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set interpretations

- 2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-Expression-Use Graphs
- 2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic Model Checking
- 2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld, Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid MCG-Mesh Testbed
- 2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski: Model Checking Software for Microcontrollers
- 2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker: Replaying Play in and Play out: Synthesis of Design Models from Scenarios by Learning
- 2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling Equalities and Disequalities
- 2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann, Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI Work Group "Requirements Management Tools for Product Line Engineering"
- 2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical sensors from mice for new input devices
- 2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for Pointing Devices with Low Expressiveness
- 2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improving Interfaces for Searching and Navigating Continuous Audio Timelines
- 2007-01 * Fachgruppe Informatik: Jahresbericht 2006
- 2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René Thiemann, and Harald Zankl: SAT Solving for Termination Analysis with Polynomial Interpretations
- 2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-Kamp: Proving Termination by Bounded Increase

* These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.